test_nightly_vlms_mmmu_eval.py 4.41 KB
Newer Older
Mick's avatar
Mick committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import json
import unittest
import warnings
from types import SimpleNamespace

from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    ModelDeploySetup,
    ModelEvalMetrics,
    check_evaluation_test_results,
    popen_launch_server,
    write_results_to_json,
)

MODEL_THRESHOLDS = {
    # Conservative thresholds on 100 MMMU samples, especially for latency thresholds
    ModelDeploySetup("deepseek-ai/deepseek-vl2-small"): ModelEvalMetrics(0.330, 56.1),
    ModelDeploySetup("deepseek-ai/Janus-Pro-7B"): ModelEvalMetrics(0.285, 39.9),
    ModelDeploySetup("Efficient-Large-Model/NVILA-Lite-2B-hf-0626"): ModelEvalMetrics(
        0.305, 23.8
    ),
    ModelDeploySetup("google/gemma-3-4b-it"): ModelEvalMetrics(0.360, 10.9),
    ModelDeploySetup("google/gemma-3n-E4B-it"): ModelEvalMetrics(0.360, 15.3),
27
    ModelDeploySetup("mistral-community/pixtral-12b"): ModelEvalMetrics(0.360, 16.6),
Mick's avatar
Mick committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    ModelDeploySetup("moonshotai/Kimi-VL-A3B-Instruct"): ModelEvalMetrics(0.330, 22.3),
    ModelDeploySetup("openbmb/MiniCPM-o-2_6"): ModelEvalMetrics(0.330, 29.3),
    ModelDeploySetup("openbmb/MiniCPM-v-2_6"): ModelEvalMetrics(0.270, 24.5),
    ModelDeploySetup("OpenGVLab/InternVL2_5-2B"): ModelEvalMetrics(0.300, 14.0),
    ModelDeploySetup("Qwen/Qwen2-VL-7B-Instruct"): ModelEvalMetrics(0.310, 83.3),
    ModelDeploySetup("Qwen/Qwen2.5-VL-7B-Instruct"): ModelEvalMetrics(0.340, 31.9),
    ModelDeploySetup("unsloth/Mistral-Small-3.1-24B-Instruct-2503"): ModelEvalMetrics(
        0.310, 16.7
    ),
    ModelDeploySetup("XiaomiMiMo/MiMo-VL-7B-RL"): ModelEvalMetrics(0.28, 32.0),
    ModelDeploySetup("zai-org/GLM-4.1V-9B-Thinking"): ModelEvalMetrics(0.280, 30.4),
}


class TestNightlyVLMMmmuEval(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.models = list(MODEL_THRESHOLDS.keys())
        cls.base_url = DEFAULT_URL_FOR_TEST

    def test_mmmu_vlm_models(self):
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
        is_first = True
        all_results = []

        for model in self.models:
            model_path = model.model_path
            with self.subTest(model=model_path):
                process = popen_launch_server(
                    model=model_path,
                    base_url=self.base_url,
                    other_args=model.extra_args,
                    timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
                )
                try:
                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model_path,
                        eval_name="mmmu",
                        num_examples=100,
                        num_threads=64,
                        max_tokens=30,
                    )

                    args.return_latency = True

                    metrics, latency = run_eval(args)

                    metrics["score"] = round(metrics["score"], 4)
                    metrics["latency"] = round(latency, 4)
                    print(
                        f"{'=' * 42}\n{model_path} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )

                    write_results_to_json(model_path, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append(
                        (model_path, metrics["score"], metrics["latency"])
                    )
                finally:
                    kill_process_tree(process.pid)

        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results: {e}")

        model_accuracy_thresholds = {
            model.model_path: threshold.accuracy
            for model, threshold in MODEL_THRESHOLDS.items()
        }
        model_latency_thresholds = {
            model.model_path: threshold.eval_time
            for model, threshold in MODEL_THRESHOLDS.items()
        }
        check_evaluation_test_results(
            all_results,
            self.__class__.__name__,
            model_accuracy_thresholds=model_accuracy_thresholds,
            model_latency_thresholds=model_latency_thresholds,
        )


if __name__ == "__main__":
    unittest.main()