test_nightly_vlms_mmmu_eval.py 4.41 KB
Newer Older
Mick's avatar
Mick committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import json
import unittest
import warnings
from types import SimpleNamespace

from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    ModelDeploySetup,
    ModelEvalMetrics,
    check_evaluation_test_results,
    popen_launch_server,
    write_results_to_json,
)

MODEL_THRESHOLDS = {
    # Conservative thresholds on 100 MMMU samples, especially for latency thresholds
    ModelDeploySetup("deepseek-ai/deepseek-vl2-small"): ModelEvalMetrics(0.330, 56.1),
    ModelDeploySetup("deepseek-ai/Janus-Pro-7B"): ModelEvalMetrics(0.285, 39.9),
    ModelDeploySetup("Efficient-Large-Model/NVILA-Lite-2B-hf-0626"): ModelEvalMetrics(
        0.305, 23.8
    ),
    ModelDeploySetup("google/gemma-3-4b-it"): ModelEvalMetrics(0.360, 10.9),
    ModelDeploySetup("google/gemma-3n-E4B-it"): ModelEvalMetrics(0.360, 15.3),
    ModelDeploySetup("mistral-community/pixtral-12b"): ModelEvalMetrics(0.360, 14.5),
    ModelDeploySetup("moonshotai/Kimi-VL-A3B-Instruct"): ModelEvalMetrics(0.330, 22.3),
    ModelDeploySetup("openbmb/MiniCPM-o-2_6"): ModelEvalMetrics(0.330, 29.3),
    ModelDeploySetup("openbmb/MiniCPM-v-2_6"): ModelEvalMetrics(0.270, 24.5),
    ModelDeploySetup("OpenGVLab/InternVL2_5-2B"): ModelEvalMetrics(0.300, 14.0),
    ModelDeploySetup("Qwen/Qwen2-VL-7B-Instruct"): ModelEvalMetrics(0.310, 83.3),
    ModelDeploySetup("Qwen/Qwen2.5-VL-7B-Instruct"): ModelEvalMetrics(0.340, 31.9),
    ModelDeploySetup("unsloth/Mistral-Small-3.1-24B-Instruct-2503"): ModelEvalMetrics(
        0.310, 16.7
    ),
    ModelDeploySetup("XiaomiMiMo/MiMo-VL-7B-RL"): ModelEvalMetrics(0.28, 32.0),
    ModelDeploySetup("zai-org/GLM-4.1V-9B-Thinking"): ModelEvalMetrics(0.280, 30.4),
}


class TestNightlyVLMMmmuEval(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.models = list(MODEL_THRESHOLDS.keys())
        cls.base_url = DEFAULT_URL_FOR_TEST

    def test_mmmu_vlm_models(self):
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
        is_first = True
        all_results = []

        for model in self.models:
            model_path = model.model_path
            with self.subTest(model=model_path):
                process = popen_launch_server(
                    model=model_path,
                    base_url=self.base_url,
                    other_args=model.extra_args,
                    timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
                )
                try:
                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model_path,
                        eval_name="mmmu",
                        num_examples=100,
                        num_threads=64,
                        max_tokens=30,
                    )

                    args.return_latency = True

                    metrics, latency = run_eval(args)

                    metrics["score"] = round(metrics["score"], 4)
                    metrics["latency"] = round(latency, 4)
                    print(
                        f"{'=' * 42}\n{model_path} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )

                    write_results_to_json(model_path, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append(
                        (model_path, metrics["score"], metrics["latency"])
                    )
                finally:
                    kill_process_tree(process.pid)

        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results: {e}")

        model_accuracy_thresholds = {
            model.model_path: threshold.accuracy
            for model, threshold in MODEL_THRESHOLDS.items()
        }
        model_latency_thresholds = {
            model.model_path: threshold.eval_time
            for model, threshold in MODEL_THRESHOLDS.items()
        }
        check_evaluation_test_results(
            all_results,
            self.__class__.__name__,
            model_accuracy_thresholds=model_accuracy_thresholds,
            model_latency_thresholds=model_latency_thresholds,
        )


if __name__ == "__main__":
    unittest.main()