test_vision_openai_server_common.py 16.2 KB
Newer Older
1
2
import base64
import io
Ying Sheng's avatar
Ying Sheng committed
3
import json
4
import os
5
from concurrent.futures import ThreadPoolExecutor
Ying Sheng's avatar
Ying Sheng committed
6

7
import numpy as np
Ying Sheng's avatar
Ying Sheng committed
8
import openai
9
10
import requests
from PIL import Image
Ying Sheng's avatar
Ying Sheng committed
11

12
from sglang.srt.utils import kill_process_tree
13
14
15
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
16
    CustomTestCase,
17
18
    popen_launch_server,
)
Ying Sheng's avatar
Ying Sheng committed
19

20
21
22
23
24
25
26
27
28
29
30
# image
IMAGE_MAN_IRONING_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/man_ironing_on_back_of_suv.png"
IMAGE_SGL_LOGO_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/sgl_logo.png"

# video
VIDEO_JOBS_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/videos/jobs_presenting_ipod.mp4"

# audio
AUDIO_TRUMP_SPEECH_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/Trump_WEF_2018_10s.mp3"
AUDIO_BIRD_SONG_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/bird_song.mp3"

Ying Sheng's avatar
Ying Sheng committed
31

32
class TestOpenAIVisionServer(CustomTestCase):
Ying Sheng's avatar
Ying Sheng committed
33
34
    @classmethod
    def setUpClass(cls):
35
        cls.model = "lmms-lab/llava-onevision-qwen2-0.5b-ov"
36
        cls.base_url = DEFAULT_URL_FOR_TEST
Ying Sheng's avatar
Ying Sheng committed
37
38
39
40
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
41
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
Ying Sheng's avatar
Ying Sheng committed
42
43
44
45
46
47
            api_key=cls.api_key,
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
48
        kill_process_tree(cls.process.pid)
Ying Sheng's avatar
Ying Sheng committed
49

50
    def test_single_image_chat_completion(self):
Ying Sheng's avatar
Ying Sheng committed
51
52
53
54
55
56
57
58
59
60
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
61
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
Ying Sheng's avatar
Ying Sheng committed
62
                        },
Ying Sheng's avatar
Ying Sheng committed
63
64
65
66
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
Ying Sheng's avatar
Ying Sheng committed
67
68
69
70
71
72
73
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
Ying Sheng's avatar
Ying Sheng committed
74
75
        text = response.choices[0].message.content
        assert isinstance(text, str)
76
        # `driver` is for gemma-3-it
77
78
79
80
81
82
83
84
85
86
        assert (
            "man" in text or "person" or "driver" in text
        ), f"text: {text}, should contain man, person or driver"
        assert (
            "cab" in text
            or "taxi" in text
            or "SUV" in text
            or "vehicle" in text
            or "car" in text
        ), f"text: {text}, should contain cab, taxi, SUV, vehicle or car"
Mick's avatar
Mick committed
87
        # MiniCPMO fails to recognize `iron`, but `hanging`
88
89
90
        assert (
            "iron" in text or "hang" in text or "cloth" in text or "holding" in text
        ), f"text: {text}, should contain iron, hang, cloth or holding"
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

    def test_multi_turn_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
108
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
                    ],
                },
                {
                    "role": "assistant",
                    "content": [
                        {
                            "type": "text",
                            "text": "There is a man at the back of a yellow cab ironing his clothes.",
                        }
                    ],
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Repeat your previous answer."}
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
138
139
140
        assert (
            "man" in text or "cab" in text
        ), f"text: {text}, should contain man or cab"
Ying Sheng's avatar
Ying Sheng committed
141
142
143
144
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
145
146
        assert response.usage.total_tokens > 0

147
    def test_multi_images_chat_completion(self):
148
149
150
151
152
153
154
155
156
157
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
Mick's avatar
Mick committed
158
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
159
                            "modalities": "multi-images",
160
161
162
                        },
                        {
                            "type": "image_url",
163
                            "image_url": {"url": IMAGE_SGL_LOGO_URL},
164
                            "modalities": "multi-images",
165
166
167
                        },
                        {
                            "type": "text",
168
169
                            "text": "I have two very different images. They are not related at all. "
                            "Please describe the first image in one sentence, and then describe the second image in another sentence.",
170
171
172
173
174
175
176
177
178
179
                        },
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
Mick's avatar
Mick committed
180
181
182
        print("-" * 30)
        print(f"Multi images response:\n{text}")
        print("-" * 30)
183
184
185
186
187
188
        assert (
            "man" in text or "cab" in text or "SUV" in text or "taxi" in text
        ), f"text: {text}, should contain man, cab, SUV or taxi"
        assert (
            "logo" in text or '"S"' in text or "SG" in text
        ), f"text: {text}, should contain logo, S or SG"
189
190
191
192
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
Ying Sheng's avatar
Ying Sheng committed
193
194
        assert response.usage.total_tokens > 0

195
    def prepare_video_messages(self, video_path):
196
197
        # the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa
        # the size of the video embeds differs from the `modality` argument when preprocessed
198
199
200
201
202
203
204

        # We import decord here to avoid a strange Segmentation fault (core dumped) issue.
        # The following import order will cause Segmentation fault.
        # import decord
        # from transformers import AutoTokenizer
        from decord import VideoReader, cpu

205
        max_frames_num = 20
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        vr = VideoReader(video_path, ctx=cpu(0))
        total_frame_num = len(vr)
        uniform_sampled_frames = np.linspace(
            0, total_frame_num - 1, max_frames_num, dtype=int
        )
        frame_idx = uniform_sampled_frames.tolist()
        frames = vr.get_batch(frame_idx).asnumpy()

        base64_frames = []
        for frame in frames:
            pil_img = Image.fromarray(frame)
            buff = io.BytesIO()
            pil_img.save(buff, format="JPEG")
            base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
            base64_frames.append(base64_str)

        messages = [{"role": "user", "content": []}]
        frame_format = {
            "type": "image_url",
            "image_url": {"url": "data:image/jpeg;base64,{}"},
226
            "modalities": "video",
227
228
229
230
231
232
233
234
235
236
237
238
239
        }

        for base64_frame in base64_frames:
            frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
                base64_frame
            )
            messages[0]["content"].append(frame_format.copy())

        prompt = {"type": "text", "text": "Please describe the video in detail."}
        messages[0]["content"].append(prompt)

        return messages

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def prepare_video_messages_video_direct(self, video_path):
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {"url": f"video:{video_path}"},
                        "modalities": "video",
                    },
                    {"type": "text", "text": "Please describe the video in detail."},
                ],
            },
        ]
        return messages

256
    def get_or_download_file(self, url: str) -> str:
257
        cache_dir = os.path.expanduser("~/.cache")
258
259
260
261
        if url is None:
            raise ValueError()
        file_name = url.split("/")[-1]
        file_path = os.path.join(cache_dir, file_name)
262
263
264
265
266
267
268
269
        os.makedirs(cache_dir, exist_ok=True)

        if not os.path.exists(file_path):
            response = requests.get(url)
            response.raise_for_status()

            with open(file_path, "wb") as f:
                f.write(response.content)
270
271
272
273
274
        return file_path

    def test_video_chat_completion(self):
        url = VIDEO_JOBS_URL
        file_path = self.get_or_download_file(url)
275
276
277

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

278
        # messages = self.prepare_video_messages_video_direct(file_path)
279
280
        messages = self.prepare_video_messages(file_path)

Mick's avatar
Mick committed
281
        response = client.chat.completions.create(
282
283
284
285
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=1024,
Mick's avatar
Mick committed
286
            stream=False,
287
        )
288

Mick's avatar
Mick committed
289
290
        video_response = response.choices[0].message.content

291
        print("-" * 30)
Mick's avatar
Mick committed
292
        print(f"Video response:\n{video_response}")
293
294
295
        print("-" * 30)

        # Add assertions to validate the video response
296
297
298
        assert (
            "iPod" in video_response or "device" in video_response
        ), f"video_response: {video_response}, should contain 'iPod' or 'device'"
Mick's avatar
Mick committed
299
300
301
302
        assert (
            "man" in video_response
            or "person" in video_response
            or "individual" in video_response
303
            or "speaker" in video_response
304
        ), f"video_response: {video_response}, should either have 'man' in video_response, or 'person' in video_response, or 'individual' in video_response or 'speaker' in video_response"
Mick's avatar
Mick committed
305
306
307
308
        assert (
            "present" in video_response
            or "examine" in video_response
            or "display" in video_response
309
            or "hold" in video_response
310
311
312
313
        ), f"video_response: {video_response}, should contain 'present', 'examine', 'display', or 'hold'"
        assert (
            "black" in video_response or "dark" in video_response
        ), f"video_response: {video_response}, should contain 'black' or 'dark'"
314
315
316
        self.assertIsNotNone(video_response)
        self.assertGreater(len(video_response), 0)

Ying Sheng's avatar
Ying Sheng committed
317
318
319
320
    def test_regex(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        regex = (
321
322
323
            r"""\{"""
            + r""""color":"[\w]+","""
            + r""""number_of_cars":[\d]+"""
Ying Sheng's avatar
Ying Sheng committed
324
325
326
327
328
329
330
331
332
333
334
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
335
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
Ying Sheng's avatar
Ying Sheng committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in the JSON format.",
                        },
                    ],
                },
            ],
            temperature=0,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["color"], str)
        assert isinstance(js_obj["number_of_cars"], int)

357
358
359
360
361
362
363
364
    def run_decode_with_image(self, image_id):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        content = []
        if image_id == 0:
            content.append(
                {
                    "type": "image_url",
365
                    "image_url": {"url": IMAGE_MAN_IRONING_URL},
366
367
368
369
370
371
                }
            )
        elif image_id == 1:
            content.append(
                {
                    "type": "image_url",
372
                    "image_url": {"url": IMAGE_SGL_LOGO_URL},
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                }
            )
        else:
            pass

        content.append(
            {
                "type": "text",
                "text": "Describe this image in a very short sentence.",
            }
        )

        response = client.chat.completions.create(
            model="default",
            messages=[
                {"role": "user", "content": content},
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)

    def test_mixed_batch(self):
        image_ids = [0, 1, 2] * 4
        with ThreadPoolExecutor(4) as executor:
            list(executor.map(self.run_decode_with_image, image_ids))

Mick's avatar
Mick committed
402
403
404
405
406
407
408
409
410
    def prepare_audio_messages(self, prompt, audio_file_name):
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "audio_url",
                        "audio_url": {"url": f"{audio_file_name}"},
                    },
Mick's avatar
Mick committed
411
412
413
414
                    {
                        "type": "text",
                        "text": prompt,
                    },
Mick's avatar
Mick committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
                ],
            }
        ]

        return messages

    def get_audio_response(self, url: str, prompt, category):
        audio_file_path = self.get_or_download_file(url)
        client = openai.Client(api_key="sk-123456", base_url=self.base_url)

        messages = self.prepare_audio_messages(prompt, audio_file_path)

        response = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=128,
            stream=False,
        )

        audio_response = response.choices[0].message.content

        print("-" * 30)
        print(f"audio {category} response:\n{audio_response}")
        print("-" * 30)

        audio_response = audio_response.lower()

        self.assertIsNotNone(audio_response)
        self.assertGreater(len(audio_response), 0)

        return audio_response

    def _test_audio_speech_completion(self):
        # a fragment of Trump's speech
        audio_response = self.get_audio_response(
            AUDIO_TRUMP_SPEECH_URL,
            "I have an audio sample. Please repeat the person's words",
            category="speech",
        )
        assert "thank you" in audio_response
        assert "it's a privilege to be here" in audio_response
        assert "leader" in audio_response
        assert "science" in audio_response
        assert "art" in audio_response

    def _test_audio_ambient_completion(self):
        # bird song
        audio_response = self.get_audio_response(
            AUDIO_BIRD_SONG_URL,
            "Please listen to the audio snippet carefully and transcribe the content.",
            "ambient",
        )
        assert "bird" in audio_response

    def test_audio_chat_completion(self):
        pass