fp8_blockwise_moe_kernel.cu 26 KB
Newer Older
1
2
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <cutlass/arch/arch.h>
#include <torch/all.h>

#include "cute/tensor.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/dispatch_policy.hpp"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/group_array_problem_shape.hpp"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/gemm/kernel/tile_scheduler_params.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass_moe_helper.cu"
#include "utils.h"

using namespace cute;

using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int, int, int>>;
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

template <typename OutType, typename ScheduleConfig, typename LayoutD>
void launch_sm90_fp8_blockwise_scaled_group_mm(
    torch::Tensor& out_ptrs,
    const torch::Tensor& a_ptrs,
    const torch::Tensor& b_ptrs,
    const torch::Tensor& a_scales_ptrs,
    const torch::Tensor& b_scales_ptrs,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace) {
  using ElementA = cutlass::float_e4m3_t;
  using ElementB = cutlass::float_e4m3_t;
  using ElementC = void;
  using ElementD = OutType;
  using ElementAccumulator = float;
  using LayoutA = cutlass::layout::RowMajor;
  using LayoutB = cutlass::layout::ColumnMajor;
  using LayoutC = LayoutD;

  static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
  static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
  static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementD>::value;

  using ArchTag = cutlass::arch::Sm90;
  using OperatorClass = cutlass::arch::OpClassTensorOp;
  using FusionOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementAccumulator>;

  using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      typename ScheduleConfig::MmaTileShape,
      typename ScheduleConfig::ClusterShape,
      cutlass::epilogue::collective::EpilogueTileAuto,
      ElementAccumulator,
      ElementAccumulator,
      ElementC,  // Use void to avoid load Matrix C
      LayoutC*,
      AlignmentC,
      ElementD,
      LayoutC*,
      AlignmentC,
      typename ScheduleConfig::EpilogueSchedule,
      FusionOperation>::CollectiveOp;

  using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      ElementA,
      cute::tuple<LayoutA*, typename ScheduleConfig::LayoutSFA*>,
      AlignmentA,
      ElementB,
      cute::tuple<LayoutB*, typename ScheduleConfig::LayoutSFB*>,
      AlignmentB,
      ElementAccumulator,
      typename ScheduleConfig::MmaTileShape,
      typename ScheduleConfig::ClusterShape,
      cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
          sizeof(typename CollectiveEpilogue::SharedStorage))>,
      typename ScheduleConfig::KernelSchedule>::CollectiveOp;

  using GemmKernel = cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop, CollectiveEpilogue, void>;

  using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
  using UnderlyingProblemShape = ProblemShape::UnderlyingProblemShape;
  using StrideA = typename Gemm::GemmKernel::InternalStrideA;
  using StrideB = typename Gemm::GemmKernel::InternalStrideB;
  using StrideC = typename Gemm::GemmKernel::InternalStrideC;
  using StrideD = typename Gemm::GemmKernel::InternalStrideD;

  int num_experts = (int)expert_offsets.size(0);
  Gemm gemm_op;

  typename GemmKernel::MainloopArguments mainloop_args{
      static_cast<const ElementA**>(a_ptrs.data_ptr()),
      static_cast<StrideA*>(stride_a.data_ptr()),
      static_cast<const ElementB**>(b_ptrs.data_ptr()),
      static_cast<StrideB*>(stride_b.data_ptr()),
      static_cast<const ElementAccumulator**>(a_scales_ptrs.data_ptr()),
      reinterpret_cast<typename ScheduleConfig::LayoutSFA*>(layout_sfa.data_ptr()),
      static_cast<const ElementAccumulator**>(b_scales_ptrs.data_ptr()),
      reinterpret_cast<typename ScheduleConfig::LayoutSFB*>(layout_sfb.data_ptr())};

  cutlass::KernelHardwareInfo hw_info;
  hw_info.device_id = c10::cuda::current_device();
  hw_info.sm_count = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;

  typename GemmKernel::EpilogueArguments epilogue_args{
      {},
      nullptr,
      static_cast<StrideC*>(stride_c.data_ptr()),
      static_cast<ElementD**>(out_ptrs.data_ptr()),
      static_cast<StrideC*>(stride_c.data_ptr())};

  UnderlyingProblemShape* problem_sizes_as_shapes = static_cast<UnderlyingProblemShape*>(problem_sizes.data_ptr());
  typename GemmKernel::Arguments args{
      cutlass::gemm::GemmUniversalMode::kGrouped,
      {num_experts, problem_sizes_as_shapes, nullptr},
      mainloop_args,
      epilogue_args,
      hw_info};

  at::cuda::CUDAGuard device_guard{(char)a_ptrs.get_device()};
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream(a_ptrs.get_device());

  auto can_implement_status = gemm_op.can_implement(args);
  TORCH_CHECK(can_implement_status == cutlass::Status::kSuccess, "Failed to implement GEMM");

  auto status = gemm_op.initialize(args, workspace.data_ptr(), stream);
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to initialize GEMM");

  status = gemm_op.run(stream);
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
template <typename OutType, typename ScheduleConfig, typename LayoutD>
void launch_sm100_fp8_blockwise_scaled_group_mm(
    torch::Tensor& out_ptrs,
    const torch::Tensor& a_ptrs,
    const torch::Tensor& b_ptrs,
    const torch::Tensor& a_scales_ptrs,
    const torch::Tensor& b_scales_ptrs,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace) {
  using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int, int, int>>;
  using ElementA = cutlass::float_e4m3_t;
  using ElementB = cutlass::float_e4m3_t;
  using ElementC = OutType;
  using ElementD = ElementC;
  using ElementAccumulator = float;
  using LayoutA = cutlass::layout::RowMajor;
  using LayoutB = cutlass::layout::ColumnMajor;
  using LayoutC = LayoutD;

  static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
  static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
  static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;

  using ArchTag = cutlass::arch::Sm100;
  using OperatorClass = cutlass::arch::OpClassTensorOp;
  using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      typename ScheduleConfig::MmaTileShape,
      typename ScheduleConfig::ClusterShape,
      cutlass::epilogue::collective::EpilogueTileAuto,
      ElementAccumulator,
      ElementAccumulator,
      void,
      LayoutC*,
      AlignmentC,
      ElementD,
      LayoutC*,
      AlignmentC,
      typename ScheduleConfig::EpilogueSchedule>::CollectiveOp;

  using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      ElementA,
      cute::tuple<LayoutA*, typename ScheduleConfig::LayoutSFA*>,
      AlignmentA,
      ElementB,
      cute::tuple<LayoutB*, typename ScheduleConfig::LayoutSFB*>,
      AlignmentB,
      ElementAccumulator,
      typename ScheduleConfig::MmaTileShape,
      typename ScheduleConfig::ClusterShape,
      cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
          sizeof(typename CollectiveEpilogue::SharedStorage))>,
      typename ScheduleConfig::KernelSchedule>::CollectiveOp;

  using GemmKernel = cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop, CollectiveEpilogue, void>;

  using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
  using UnderlyingProblemShape = ProblemShape::UnderlyingProblemShape;
  using StrideA = typename Gemm::GemmKernel::InternalStrideA;
  using StrideB = typename Gemm::GemmKernel::InternalStrideB;
  using StrideC = typename Gemm::GemmKernel::InternalStrideC;
  using StrideD = typename Gemm::GemmKernel::InternalStrideD;

  int num_experts = (int)expert_offsets.size(0);
  // Create an instance of the GEMM
  Gemm gemm_op;

  typename GemmKernel::MainloopArguments mainloop_args{
      static_cast<const ElementA**>(a_ptrs.data_ptr()),
      static_cast<StrideA*>(stride_a.data_ptr()),
      static_cast<const ElementB**>(b_ptrs.data_ptr()),
      static_cast<StrideB*>(stride_b.data_ptr()),
      static_cast<const ElementAccumulator**>(a_scales_ptrs.data_ptr()),
      reinterpret_cast<typename ScheduleConfig::LayoutSFA*>(layout_sfa.data_ptr()),
      static_cast<const ElementAccumulator**>(b_scales_ptrs.data_ptr()),
      reinterpret_cast<typename ScheduleConfig::LayoutSFB*>(layout_sfb.data_ptr())};

  cutlass::KernelHardwareInfo hw_info;

  hw_info.device_id = 0;
242
243
  // sm_count is the number of SMs on the current device, since we only support SM100 blackwell, so we set it to 148
  hw_info.sm_count = 148;
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  typename GemmKernel::EpilogueArguments epilogue_args{
      {},
      nullptr,
      static_cast<StrideC*>(stride_c.data_ptr()),
      static_cast<ElementD**>(out_ptrs.data_ptr()),
      static_cast<StrideC*>(stride_c.data_ptr())};

  UnderlyingProblemShape* problem_sizes_as_shapes = static_cast<UnderlyingProblemShape*>(problem_sizes.data_ptr());
  typename GemmKernel::Arguments args{
      cutlass::gemm::GemmUniversalMode::kGrouped,
      {num_experts, problem_sizes_as_shapes, nullptr},
      mainloop_args,
      epilogue_args,
      hw_info};

259
260
261
  at::cuda::CUDAGuard device_guard{(char)a_ptrs.get_device()};
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream(a_ptrs.get_device());

262
263
264
  auto can_implement_status = gemm_op.can_implement(args);
  TORCH_CHECK(can_implement_status == cutlass::Status::kSuccess, "Failed to implement GEMM");

265
  auto status = gemm_op.initialize(args, workspace.data_ptr(), stream);
266
267
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to initialize GEMM");

268
  status = gemm_op.run(stream);
269
270
271
272
273
274
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}

template <typename OutType>
void sm100_fp8_blockwise_group_mm_dispatch_shape(
    torch::Tensor& output,
275
276
277
278
279
    torch::Tensor& a_ptrs,
    torch::Tensor& b_ptrs,
    torch::Tensor& out_ptrs,
    torch::Tensor& a_scales_ptrs,
    torch::Tensor& b_scales_ptrs,
280
281
282
283
284
285
286
287
288
289
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
290
291
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace) {
292
293
294
  // Check the first matrix size to decide on the configuration
  // Assuming all matrices in the group have similar size characteristics
  // bool use_small_config = a[0].size(0) <= 128;
295
296
  struct MmaConfig1 {
    using ElementA = cutlass::float_e4m3_t;
297
298
299
300
    using MmaTileShape = Shape<_256, _32, _128>;
    using ClusterShape = Shape<_2, _1, _1>;  // Layout type for SFB matrix operand
    using KernelSchedule = cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise2SmSm100;
    using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized2Sm;
301
302
303
304
305
306
    using ScaleConfig =
        cutlass::detail::Sm100BlockwiseScaleConfig<128, 1, 128, cute::UMMA::Major::K, cute::UMMA::Major::K>;
    using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
    using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
  };
  struct MmaConfig2 {
307
308
309
310
311
312
313
314
315
316
    using ElementA = cutlass::float_e4m3_t;
    using MmaTileShape = Shape<_128, _128, _128>;
    using ClusterShape = Shape<_1, _1, _1>;  // Layout type for SFB matrix operand
    using KernelSchedule = cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise1SmSm100;
    using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
    using ScaleConfig =
        cutlass::detail::Sm100BlockwiseScaleConfig<1, 128, 128, cute::UMMA::Major::K, cute::UMMA::Major::K>;
    using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
    using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
  };
317
  struct MmaConfig3 {
318
    using ElementA = cutlass::float_e4m3_t;
319
    using MmaTileShape = Shape<_64, _128, _128>;
320
321
322
323
    using ClusterShape = Shape<_1, _1, _1>;  // Layout type for SFB matrix operand
    using KernelSchedule = cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise1SmSm100;
    using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
    using ScaleConfig =
324
        cutlass::detail::Sm100BlockwiseScaleConfig<1, 128, 128, cute::UMMA::Major::K, cute::UMMA::Major::K>;
325
326
327
328
329
330
331
332
333
334
335
336
    using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
    using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
  };
  int num_experts = (int)expert_offsets.size(0);
  torch::TensorOptions options_int = torch::TensorOptions().dtype(torch::kInt64).device(a.device());
  torch::Tensor problem_sizes_transpose = torch::empty(num_experts * 3, options_int);
  torch::Tensor output_t = output.t();
  torch::Tensor a_t = a.t();
  torch::Tensor b_t = b.transpose(1, 2);
  torch::Tensor scales_a_t = scales_a.t();
  torch::Tensor scales_b_t = scales_b.transpose(1, 2);

337
  if (a.size(0) <= 2048 && a.size(1) >= 2048) {
338
    run_get_group_gemm_starts<MmaConfig1::LayoutSFA, MmaConfig1::LayoutSFB, MmaConfig1::ScaleConfig>(
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        expert_offsets,
        a_ptrs,
        b_ptrs,
        out_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        b_t,
        a_t,
        output_t,
        scales_b_t,
        scales_a_t,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        problem_sizes_transpose,
        true);
355
    launch_sm100_fp8_blockwise_scaled_group_mm<OutType, MmaConfig1, cutlass::layout::ColumnMajor>(
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        out_ptrs,
        a_ptrs,
        b_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        stride_a,
        stride_b,
        stride_c,
        layout_sfa,
        layout_sfb,
        problem_sizes_transpose,
        expert_offsets,
        workspace);
    output = output_t.t();
370
  } else if (a.size(0) > 2048 && a.size(1) >= 2048) {
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    run_get_group_gemm_starts<MmaConfig2::LayoutSFA, MmaConfig2::LayoutSFB, MmaConfig2::ScaleConfig>(
        expert_offsets,
        a_ptrs,
        b_ptrs,
        out_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        a,
        b,
        output,
        scales_a,
        scales_b,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        problem_sizes_transpose);
    launch_sm100_fp8_blockwise_scaled_group_mm<OutType, MmaConfig2, cutlass::layout::RowMajor>(
        out_ptrs,
        a_ptrs,
        b_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        stride_a,
        stride_b,
        stride_c,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        expert_offsets,
        workspace);
401
  } else {
402
    run_get_group_gemm_starts<MmaConfig3::LayoutSFA, MmaConfig3::LayoutSFB, MmaConfig3::ScaleConfig>(
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        expert_offsets,
        a_ptrs,
        b_ptrs,
        out_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        a,
        b,
        output,
        scales_a,
        scales_b,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        problem_sizes_transpose);
418
    launch_sm100_fp8_blockwise_scaled_group_mm<OutType, MmaConfig3, cutlass::layout::RowMajor>(
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        out_ptrs,
        a_ptrs,
        b_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        stride_a,
        stride_b,
        stride_c,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        expert_offsets,
        workspace);
  }
}

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
template <typename OutType>
void sm90_fp8_blockwise_group_mm_dispatch_shape(
    torch::Tensor& output,
    torch::Tensor& a_ptrs,
    torch::Tensor& b_ptrs,
    torch::Tensor& out_ptrs,
    torch::Tensor& a_scales_ptrs,
    torch::Tensor& b_scales_ptrs,
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace) {
  struct MmaConfig {
    using ElementA = cutlass::float_e4m3_t;
    using MmaTileShape = Shape<_64, _128, _128>;
    using ClusterShape = Shape<_2, _1, _1>;
    using KernelSchedule = cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpongFP8BlockScaledAccum;
    using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
    using ScaleConfig = cutlass::detail::Sm90BlockwiseScaleConfig<1, 128, 128>;

    using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
    using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
  };

  int num_experts = (int)expert_offsets.size(0);
  torch::TensorOptions options_int = torch::TensorOptions().dtype(torch::kInt64).device(a.device());
  torch::Tensor problem_sizes_transpose = torch::empty(num_experts * 3, options_int);

  run_get_group_gemm_starts<MmaConfig::LayoutSFA, MmaConfig::LayoutSFB, MmaConfig::ScaleConfig>(
      expert_offsets,
      a_ptrs,
      b_ptrs,
      out_ptrs,
      a_scales_ptrs,
      b_scales_ptrs,
      a,
      b,
      output,
      scales_a,
      scales_b,
      layout_sfa,
      layout_sfb,
      problem_sizes,
      problem_sizes_transpose);
  launch_sm90_fp8_blockwise_scaled_group_mm<OutType, MmaConfig, cutlass::layout::RowMajor>(
      out_ptrs,
      a_ptrs,
      b_ptrs,
      a_scales_ptrs,
      b_scales_ptrs,
      stride_a,
      stride_b,
      stride_c,
      layout_sfa,
      layout_sfb,
      problem_sizes,
      expert_offsets,
      workspace);
}

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/**
 * @brief Performs blockwise grouped matrix multiplication on FP8 quantized inputs,
 *        with per-block scaling.
 *
 * This function dispatches to hardware-specific implementations (e.g., SM100 FP8)
 * to compute:
 *     C_i = scale_a[i] * A_i * scale_b[i] * B_i
 * for each expert group `i`, using input `problem_sizes` and `expert_offsets`
 * to describe the individual matrix dimensions and their offsets.
 *
 * Input tensors A and B must be quantized to 8-bit formats and dequantized before multiplication.
 * The output tensor is written with bfloat16 or half precision.
 *
 * @param output         Output tensor (must be of type bfloat16 or half).
 * @param a              Input tensor A (must be kFloat8_e4m3fn).
 * @param b              Input tensor B (must be kFloat8_e4m3fn).
 * @param scales_a       Scaling factors for tensor A, float32 per expert group.
 * @param scales_b       Scaling factors for tensor B, float32 per expert group.
 * @param stride_a       Stride information for tensor A (int32).
 * @param stride_b       Stride information for tensor B (int32).
 * @param stride_c       Stride information for output tensor C (int32).
 * @param layout_sfa     Layout descriptor for A (int32), e.g., row-major/column-major.
 * @param layout_sfb     Layout descriptor for B (int32).
 * @param problem_sizes  2D int32 tensor of shape (num_experts, 3), specifying (M, N, K)
 *                       for each grouped matrix multiplication problem.
 * @param expert_offsets 1D int32 tensor of size (num_experts), used to index into
 *                       the grouped input tensors for dispatch.
 *  @note Performance Optimization:
 *       If the batch size (a.size(0)) is smaller than 512, the implementation
 *       will internally transpose input matrices to align with the optimal memory access
 *       pattern for better GPU efficiency. This transformation is done within the kernel.
 */
void fp8_blockwise_scaled_grouped_mm(
    torch::Tensor& output,
537
538
539
540
541
    torch::Tensor& a_ptrs,
    torch::Tensor& b_ptrs,
    torch::Tensor& out_ptrs,
    torch::Tensor& a_scales_ptrs,
    torch::Tensor& b_scales_ptrs,
542
543
544
545
546
547
548
549
550
551
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
552
553
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace) {
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
  TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be 2D tensor");
  TORCH_CHECK(problem_sizes.size(1) == 3, "problem_sizes must have shape (num_experts, 3)");
  TORCH_CHECK(
      problem_sizes.size(0) == expert_offsets.size(0), "Number of experts in problem_sizes must match expert_offsets");
  TORCH_CHECK(problem_sizes.dtype() == torch::kInt32, "problem_sizes must be int32");
  TORCH_CHECK(a.scalar_type() == torch::kFloat8_e4m3fn, "a must be kFloat8_e4m3fn");
  TORCH_CHECK(b.scalar_type() == torch::kFloat8_e4m3fn, "b must be kFloat8_e4m3fn");
  TORCH_CHECK(
      output.scalar_type() == torch::kBFloat16 || output.scalar_type() == torch::kHalf,
      "output must be bfloat16 or half");
  TORCH_CHECK(scales_a.scalar_type() == torch::kFloat32, "scales_a must be float32");
  TORCH_CHECK(scales_b.scalar_type() == torch::kFloat32, "scales_b must be float32");
  TORCH_CHECK(stride_a.scalar_type() == torch::kInt64, "stride_a must be int64");
  TORCH_CHECK(stride_b.scalar_type() == torch::kInt64, "stride_b must be int64");
  TORCH_CHECK(stride_c.scalar_type() == torch::kInt64, "stride_c must be int64");
  TORCH_CHECK(layout_sfa.scalar_type() == torch::kInt32, "layout_sfa must be int32");
  TORCH_CHECK(layout_sfb.scalar_type() == torch::kInt32, "layout_sfb must be int32");
  TORCH_CHECK(expert_offsets.scalar_type() == torch::kInt32, "expert_offsets must be int32");

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
  TORCH_CHECK(output.dim() == 2, "output must be 2D tensor");
  TORCH_CHECK(a.dim() == 2, "a must be 2D tensor");
  TORCH_CHECK(b.dim() == 3, "b must be 3D tensor");
  TORCH_CHECK(scales_a.dim() == 2, "scales_a must be 2D tensor");
  TORCH_CHECK(scales_b.dim() == 3, "scales_b must be 3D tensor");
  TORCH_CHECK(stride_a.dim() == 1, "stride_a must be 1D tensor");
  TORCH_CHECK(stride_b.dim() == 1, "stride_b must be 1D tensor");
  TORCH_CHECK(stride_c.dim() == 1, "stride_c must be 1D tensor");
  TORCH_CHECK(layout_sfa.dim() == 2, "layout_sfa must be 1D tensor");
  TORCH_CHECK(layout_sfb.dim() == 2, "layout_sfb must be 1D tensor");
  TORCH_CHECK(a_ptrs.dim() == 1, "a_ptrs must be 1D tensor");
  TORCH_CHECK(b_ptrs.dim() == 1, "b_ptrs must be 1D tensor");
  TORCH_CHECK(out_ptrs.dim() == 1, "out_ptrs must be 1D tensor");
  TORCH_CHECK(a_scales_ptrs.dim() == 1, "a_scales_ptrs must be 1D tensor");
  TORCH_CHECK(b_scales_ptrs.dim() == 1, "b_scales_ptrs must be 1D tensor");
  TORCH_CHECK(expert_offsets.dim() == 1, "expert_offsets must be 1D tensor");
  TORCH_CHECK(workspace.dim() == 1, "workspace must be 1D tensor");

591
592
593
594
595
596
597
598
599
  bool can_implement = false;
  auto sm_version = getSMVersion();

#if defined(CUTLASS_ARCH_MMA_SM100A_SUPPORTED) || defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
#if defined CUDA_VERSION && CUDA_VERSION >= 12080
  if (sm_version == 100) {
    if (output.scalar_type() == torch::kBFloat16) {
      sm100_fp8_blockwise_group_mm_dispatch_shape<cutlass::bfloat16_t>(
          output,
600
601
602
603
604
          a_ptrs,
          b_ptrs,
          out_ptrs,
          a_scales_ptrs,
          b_scales_ptrs,
605
606
607
608
609
610
611
612
613
614
          a,
          b,
          scales_a,
          scales_b,
          stride_a,
          stride_b,
          stride_c,
          layout_sfa,
          layout_sfb,
          problem_sizes,
615
616
          expert_offsets,
          workspace);
617
618
619
    } else {
      sm100_fp8_blockwise_group_mm_dispatch_shape<cutlass::half_t>(
          output,
620
621
622
623
624
          a_ptrs,
          b_ptrs,
          out_ptrs,
          a_scales_ptrs,
          b_scales_ptrs,
625
626
627
628
629
630
631
632
633
634
          a,
          b,
          scales_a,
          scales_b,
          stride_a,
          stride_b,
          stride_c,
          layout_sfa,
          layout_sfb,
          problem_sizes,
635
636
          expert_offsets,
          workspace);
637
638
639
640
    }
    can_implement = true;
  }
#endif
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
#endif

#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED) && defined(CUTLASS_ARCH_MMA_MODIFIABLE_TMA_SM90_SUPPORTED)
  if (sm_version == 90 && a.size(1) > 256) {
    if (output.scalar_type() == torch::kBFloat16) {
      sm90_fp8_blockwise_group_mm_dispatch_shape<cutlass::bfloat16_t>(
          output,
          a_ptrs,
          b_ptrs,
          out_ptrs,
          a_scales_ptrs,
          b_scales_ptrs,
          a,
          b,
          scales_a,
          scales_b,
          stride_a,
          stride_b,
          stride_c,
          layout_sfa,
          layout_sfb,
          problem_sizes,
          expert_offsets,
          workspace);
    } else {
      sm90_fp8_blockwise_group_mm_dispatch_shape<cutlass::half_t>(
          output,
          a_ptrs,
          b_ptrs,
          out_ptrs,
          a_scales_ptrs,
          b_scales_ptrs,
          a,
          b,
          scales_a,
          scales_b,
          stride_a,
          stride_b,
          stride_c,
          layout_sfa,
          layout_sfb,
          problem_sizes,
          expert_offsets,
          workspace);
    }
    can_implement = true;
  }
688
689
#endif
  TORCH_CHECK_NOT_IMPLEMENTED(
690
691
692
693
      can_implement,
      "No implemented fp8_blockwise_scaled_mm for current compute capability or K size: ",
      sm_version,
      a.size(1));
694
}