fp8_blockwise_moe_kernel.cu 18.3 KB
Newer Older
1
2
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#include <cutlass/arch/arch.h>
#include <torch/all.h>

#include "cute/tensor.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/dispatch_policy.hpp"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/group_array_problem_shape.hpp"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/gemm/kernel/tile_scheduler_params.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass_moe_helper.cu"
#include "utils.h"

using namespace cute;

using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int, int, int>>;
template <typename OutType, typename ScheduleConfig, typename LayoutD>
void launch_sm100_fp8_blockwise_scaled_group_mm(
    torch::Tensor& out_ptrs,
    const torch::Tensor& a_ptrs,
    const torch::Tensor& b_ptrs,
    const torch::Tensor& a_scales_ptrs,
    const torch::Tensor& b_scales_ptrs,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace) {
  using ProblemShape = cutlass::gemm::GroupProblemShape<Shape<int, int, int>>;
  using ElementA = cutlass::float_e4m3_t;
  using ElementB = cutlass::float_e4m3_t;
  using ElementC = OutType;
  using ElementD = ElementC;
  using ElementAccumulator = float;
  using LayoutA = cutlass::layout::RowMajor;
  using LayoutB = cutlass::layout::ColumnMajor;
  using LayoutC = LayoutD;

  static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
  static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
  static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;

  using ArchTag = cutlass::arch::Sm100;
  using OperatorClass = cutlass::arch::OpClassTensorOp;
  using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      typename ScheduleConfig::MmaTileShape,
      typename ScheduleConfig::ClusterShape,
      cutlass::epilogue::collective::EpilogueTileAuto,
      ElementAccumulator,
      ElementAccumulator,
      void,
      LayoutC*,
      AlignmentC,
      ElementD,
      LayoutC*,
      AlignmentC,
      typename ScheduleConfig::EpilogueSchedule>::CollectiveOp;

  using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
      ArchTag,
      OperatorClass,
      ElementA,
      cute::tuple<LayoutA*, typename ScheduleConfig::LayoutSFA*>,
      AlignmentA,
      ElementB,
      cute::tuple<LayoutB*, typename ScheduleConfig::LayoutSFB*>,
      AlignmentB,
      ElementAccumulator,
      typename ScheduleConfig::MmaTileShape,
      typename ScheduleConfig::ClusterShape,
      cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
          sizeof(typename CollectiveEpilogue::SharedStorage))>,
      typename ScheduleConfig::KernelSchedule>::CollectiveOp;

  using GemmKernel = cutlass::gemm::kernel::GemmUniversal<ProblemShape, CollectiveMainloop, CollectiveEpilogue, void>;

  using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
  using UnderlyingProblemShape = ProblemShape::UnderlyingProblemShape;
  using StrideA = typename Gemm::GemmKernel::InternalStrideA;
  using StrideB = typename Gemm::GemmKernel::InternalStrideB;
  using StrideC = typename Gemm::GemmKernel::InternalStrideC;
  using StrideD = typename Gemm::GemmKernel::InternalStrideD;

  int num_experts = (int)expert_offsets.size(0);
  // Create an instance of the GEMM
  Gemm gemm_op;

  typename GemmKernel::MainloopArguments mainloop_args{
      static_cast<const ElementA**>(a_ptrs.data_ptr()),
      static_cast<StrideA*>(stride_a.data_ptr()),
      static_cast<const ElementB**>(b_ptrs.data_ptr()),
      static_cast<StrideB*>(stride_b.data_ptr()),
      static_cast<const ElementAccumulator**>(a_scales_ptrs.data_ptr()),
      reinterpret_cast<typename ScheduleConfig::LayoutSFA*>(layout_sfa.data_ptr()),
      static_cast<const ElementAccumulator**>(b_scales_ptrs.data_ptr()),
      reinterpret_cast<typename ScheduleConfig::LayoutSFB*>(layout_sfb.data_ptr())};

  cutlass::KernelHardwareInfo hw_info;

  hw_info.device_id = 0;
122
123
  // sm_count is the number of SMs on the current device, since we only support SM100 blackwell, so we set it to 148
  hw_info.sm_count = 148;
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  typename GemmKernel::EpilogueArguments epilogue_args{
      {},
      nullptr,
      static_cast<StrideC*>(stride_c.data_ptr()),
      static_cast<ElementD**>(out_ptrs.data_ptr()),
      static_cast<StrideC*>(stride_c.data_ptr())};

  UnderlyingProblemShape* problem_sizes_as_shapes = static_cast<UnderlyingProblemShape*>(problem_sizes.data_ptr());
  typename GemmKernel::Arguments args{
      cutlass::gemm::GemmUniversalMode::kGrouped,
      {num_experts, problem_sizes_as_shapes, nullptr},
      mainloop_args,
      epilogue_args,
      hw_info};

139
140
141
  at::cuda::CUDAGuard device_guard{(char)a_ptrs.get_device()};
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream(a_ptrs.get_device());

142
143
144
  auto can_implement_status = gemm_op.can_implement(args);
  TORCH_CHECK(can_implement_status == cutlass::Status::kSuccess, "Failed to implement GEMM");

145
  auto status = gemm_op.initialize(args, workspace.data_ptr(), stream);
146
147
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to initialize GEMM");

148
  status = gemm_op.run(stream);
149
150
151
152
153
154
  TORCH_CHECK(status == cutlass::Status::kSuccess, "Failed to run GEMM");
}

template <typename OutType>
void sm100_fp8_blockwise_group_mm_dispatch_shape(
    torch::Tensor& output,
155
156
157
158
159
    torch::Tensor& a_ptrs,
    torch::Tensor& b_ptrs,
    torch::Tensor& out_ptrs,
    torch::Tensor& a_scales_ptrs,
    torch::Tensor& b_scales_ptrs,
160
161
162
163
164
165
166
167
168
169
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
170
171
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace) {
172
173
174
  // Check the first matrix size to decide on the configuration
  // Assuming all matrices in the group have similar size characteristics
  // bool use_small_config = a[0].size(0) <= 128;
175
176
  struct MmaConfig1 {
    using ElementA = cutlass::float_e4m3_t;
177
178
179
180
    using MmaTileShape = Shape<_256, _32, _128>;
    using ClusterShape = Shape<_2, _1, _1>;  // Layout type for SFB matrix operand
    using KernelSchedule = cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise2SmSm100;
    using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized2Sm;
181
182
183
184
185
186
    using ScaleConfig =
        cutlass::detail::Sm100BlockwiseScaleConfig<128, 1, 128, cute::UMMA::Major::K, cute::UMMA::Major::K>;
    using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
    using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
  };
  struct MmaConfig2 {
187
188
189
190
191
192
193
194
195
196
    using ElementA = cutlass::float_e4m3_t;
    using MmaTileShape = Shape<_128, _128, _128>;
    using ClusterShape = Shape<_1, _1, _1>;  // Layout type for SFB matrix operand
    using KernelSchedule = cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise1SmSm100;
    using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
    using ScaleConfig =
        cutlass::detail::Sm100BlockwiseScaleConfig<1, 128, 128, cute::UMMA::Major::K, cute::UMMA::Major::K>;
    using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
    using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
  };
197
  struct MmaConfig3 {
198
    using ElementA = cutlass::float_e4m3_t;
199
    using MmaTileShape = Shape<_64, _128, _128>;
200
201
202
203
    using ClusterShape = Shape<_1, _1, _1>;  // Layout type for SFB matrix operand
    using KernelSchedule = cutlass::gemm::KernelPtrArrayTmaWarpSpecializedBlockwise1SmSm100;
    using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
    using ScaleConfig =
204
        cutlass::detail::Sm100BlockwiseScaleConfig<1, 128, 128, cute::UMMA::Major::K, cute::UMMA::Major::K>;
205
206
207
208
209
210
211
212
213
214
215
216
    using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
    using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
  };
  int num_experts = (int)expert_offsets.size(0);
  torch::TensorOptions options_int = torch::TensorOptions().dtype(torch::kInt64).device(a.device());
  torch::Tensor problem_sizes_transpose = torch::empty(num_experts * 3, options_int);
  torch::Tensor output_t = output.t();
  torch::Tensor a_t = a.t();
  torch::Tensor b_t = b.transpose(1, 2);
  torch::Tensor scales_a_t = scales_a.t();
  torch::Tensor scales_b_t = scales_b.transpose(1, 2);

217
  if (a.size(0) <= 2048 && a.size(1) >= 2048) {
218
    run_get_group_gemm_starts<MmaConfig1::LayoutSFA, MmaConfig1::LayoutSFB, MmaConfig1::ScaleConfig>(
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        expert_offsets,
        a_ptrs,
        b_ptrs,
        out_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        b_t,
        a_t,
        output_t,
        scales_b_t,
        scales_a_t,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        problem_sizes_transpose,
        true);
235
    launch_sm100_fp8_blockwise_scaled_group_mm<OutType, MmaConfig1, cutlass::layout::ColumnMajor>(
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        out_ptrs,
        a_ptrs,
        b_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        stride_a,
        stride_b,
        stride_c,
        layout_sfa,
        layout_sfb,
        problem_sizes_transpose,
        expert_offsets,
        workspace);
    output = output_t.t();
250
  } else if (a.size(0) > 2048 && a.size(1) >= 2048) {
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    run_get_group_gemm_starts<MmaConfig2::LayoutSFA, MmaConfig2::LayoutSFB, MmaConfig2::ScaleConfig>(
        expert_offsets,
        a_ptrs,
        b_ptrs,
        out_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        a,
        b,
        output,
        scales_a,
        scales_b,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        problem_sizes_transpose);
    launch_sm100_fp8_blockwise_scaled_group_mm<OutType, MmaConfig2, cutlass::layout::RowMajor>(
        out_ptrs,
        a_ptrs,
        b_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        stride_a,
        stride_b,
        stride_c,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        expert_offsets,
        workspace);
281
  } else {
282
    run_get_group_gemm_starts<MmaConfig3::LayoutSFA, MmaConfig3::LayoutSFB, MmaConfig3::ScaleConfig>(
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        expert_offsets,
        a_ptrs,
        b_ptrs,
        out_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        a,
        b,
        output,
        scales_a,
        scales_b,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        problem_sizes_transpose);
298
    launch_sm100_fp8_blockwise_scaled_group_mm<OutType, MmaConfig3, cutlass::layout::RowMajor>(
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        out_ptrs,
        a_ptrs,
        b_ptrs,
        a_scales_ptrs,
        b_scales_ptrs,
        stride_a,
        stride_b,
        stride_c,
        layout_sfa,
        layout_sfb,
        problem_sizes,
        expert_offsets,
        workspace);
  }
}

/**
 * @brief Performs blockwise grouped matrix multiplication on FP8 quantized inputs,
 *        with per-block scaling.
 *
 * This function dispatches to hardware-specific implementations (e.g., SM100 FP8)
 * to compute:
 *     C_i = scale_a[i] * A_i * scale_b[i] * B_i
 * for each expert group `i`, using input `problem_sizes` and `expert_offsets`
 * to describe the individual matrix dimensions and their offsets.
 *
 * Input tensors A and B must be quantized to 8-bit formats and dequantized before multiplication.
 * The output tensor is written with bfloat16 or half precision.
 *
 * @param output         Output tensor (must be of type bfloat16 or half).
 * @param a              Input tensor A (must be kFloat8_e4m3fn).
 * @param b              Input tensor B (must be kFloat8_e4m3fn).
 * @param scales_a       Scaling factors for tensor A, float32 per expert group.
 * @param scales_b       Scaling factors for tensor B, float32 per expert group.
 * @param stride_a       Stride information for tensor A (int32).
 * @param stride_b       Stride information for tensor B (int32).
 * @param stride_c       Stride information for output tensor C (int32).
 * @param layout_sfa     Layout descriptor for A (int32), e.g., row-major/column-major.
 * @param layout_sfb     Layout descriptor for B (int32).
 * @param problem_sizes  2D int32 tensor of shape (num_experts, 3), specifying (M, N, K)
 *                       for each grouped matrix multiplication problem.
 * @param expert_offsets 1D int32 tensor of size (num_experts), used to index into
 *                       the grouped input tensors for dispatch.
 *  @note Performance Optimization:
 *       If the batch size (a.size(0)) is smaller than 512, the implementation
 *       will internally transpose input matrices to align with the optimal memory access
 *       pattern for better GPU efficiency. This transformation is done within the kernel.
 */
void fp8_blockwise_scaled_grouped_mm(
    torch::Tensor& output,
349
350
351
352
353
    torch::Tensor& a_ptrs,
    torch::Tensor& b_ptrs,
    torch::Tensor& out_ptrs,
    torch::Tensor& a_scales_ptrs,
    torch::Tensor& b_scales_ptrs,
354
355
356
357
358
359
360
361
362
363
    const torch::Tensor& a,
    const torch::Tensor& b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Tensor& stride_a,
    const torch::Tensor& stride_b,
    const torch::Tensor& stride_c,
    const torch::Tensor& layout_sfa,
    const torch::Tensor& layout_sfb,
    const torch::Tensor& problem_sizes,
364
365
    const torch::Tensor& expert_offsets,
    const torch::Tensor& workspace) {
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be 2D tensor");
  TORCH_CHECK(problem_sizes.size(1) == 3, "problem_sizes must have shape (num_experts, 3)");
  TORCH_CHECK(
      problem_sizes.size(0) == expert_offsets.size(0), "Number of experts in problem_sizes must match expert_offsets");
  TORCH_CHECK(problem_sizes.dtype() == torch::kInt32, "problem_sizes must be int32");
  TORCH_CHECK(a.scalar_type() == torch::kFloat8_e4m3fn, "a must be kFloat8_e4m3fn");
  TORCH_CHECK(b.scalar_type() == torch::kFloat8_e4m3fn, "b must be kFloat8_e4m3fn");
  TORCH_CHECK(
      output.scalar_type() == torch::kBFloat16 || output.scalar_type() == torch::kHalf,
      "output must be bfloat16 or half");
  TORCH_CHECK(scales_a.scalar_type() == torch::kFloat32, "scales_a must be float32");
  TORCH_CHECK(scales_b.scalar_type() == torch::kFloat32, "scales_b must be float32");
  TORCH_CHECK(stride_a.scalar_type() == torch::kInt64, "stride_a must be int64");
  TORCH_CHECK(stride_b.scalar_type() == torch::kInt64, "stride_b must be int64");
  TORCH_CHECK(stride_c.scalar_type() == torch::kInt64, "stride_c must be int64");
  TORCH_CHECK(layout_sfa.scalar_type() == torch::kInt32, "layout_sfa must be int32");
  TORCH_CHECK(layout_sfb.scalar_type() == torch::kInt32, "layout_sfb must be int32");
  TORCH_CHECK(expert_offsets.scalar_type() == torch::kInt32, "expert_offsets must be int32");

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
  TORCH_CHECK(output.dim() == 2, "output must be 2D tensor");
  TORCH_CHECK(a.dim() == 2, "a must be 2D tensor");
  TORCH_CHECK(b.dim() == 3, "b must be 3D tensor");
  TORCH_CHECK(scales_a.dim() == 2, "scales_a must be 2D tensor");
  TORCH_CHECK(scales_b.dim() == 3, "scales_b must be 3D tensor");
  TORCH_CHECK(stride_a.dim() == 1, "stride_a must be 1D tensor");
  TORCH_CHECK(stride_b.dim() == 1, "stride_b must be 1D tensor");
  TORCH_CHECK(stride_c.dim() == 1, "stride_c must be 1D tensor");
  TORCH_CHECK(layout_sfa.dim() == 2, "layout_sfa must be 1D tensor");
  TORCH_CHECK(layout_sfb.dim() == 2, "layout_sfb must be 1D tensor");
  TORCH_CHECK(a_ptrs.dim() == 1, "a_ptrs must be 1D tensor");
  TORCH_CHECK(b_ptrs.dim() == 1, "b_ptrs must be 1D tensor");
  TORCH_CHECK(out_ptrs.dim() == 1, "out_ptrs must be 1D tensor");
  TORCH_CHECK(a_scales_ptrs.dim() == 1, "a_scales_ptrs must be 1D tensor");
  TORCH_CHECK(b_scales_ptrs.dim() == 1, "b_scales_ptrs must be 1D tensor");
  TORCH_CHECK(problem_sizes.dim() == 2, "problem_sizes must be 2D tensor");
  TORCH_CHECK(problem_sizes.size(1) == 3, "problem_sizes must have shape (num_experts, 3)");
  TORCH_CHECK(
      problem_sizes.size(0) == expert_offsets.size(0), "Number of experts in problem_sizes must match expert_offsets");
  TORCH_CHECK(problem_sizes.dtype() == torch::kInt32, "problem_sizes must be int32");
  TORCH_CHECK(expert_offsets.dim() == 1, "expert_offsets must be 1D tensor");
  TORCH_CHECK(workspace.dim() == 1, "workspace must be 1D tensor");

408
409
410
411
412
413
414
415
416
  bool can_implement = false;
  auto sm_version = getSMVersion();

#if defined(CUTLASS_ARCH_MMA_SM100A_SUPPORTED) || defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
#if defined CUDA_VERSION && CUDA_VERSION >= 12080
  if (sm_version == 100) {
    if (output.scalar_type() == torch::kBFloat16) {
      sm100_fp8_blockwise_group_mm_dispatch_shape<cutlass::bfloat16_t>(
          output,
417
418
419
420
421
          a_ptrs,
          b_ptrs,
          out_ptrs,
          a_scales_ptrs,
          b_scales_ptrs,
422
423
424
425
426
427
428
429
430
431
          a,
          b,
          scales_a,
          scales_b,
          stride_a,
          stride_b,
          stride_c,
          layout_sfa,
          layout_sfb,
          problem_sizes,
432
433
          expert_offsets,
          workspace);
434
435
436
    } else {
      sm100_fp8_blockwise_group_mm_dispatch_shape<cutlass::half_t>(
          output,
437
438
439
440
441
          a_ptrs,
          b_ptrs,
          out_ptrs,
          a_scales_ptrs,
          b_scales_ptrs,
442
443
444
445
446
447
448
449
450
451
          a,
          b,
          scales_a,
          scales_b,
          stride_a,
          stride_b,
          stride_c,
          layout_sfa,
          layout_sfb,
          problem_sizes,
452
453
          expert_offsets,
          workspace);
454
455
456
457
458
459
460
461
    }
    can_implement = true;
  }
#endif
#endif
  TORCH_CHECK_NOT_IMPLEMENTED(
      can_implement, "No implemented fp8_blockwise_scaled_mm for current compute capability: ", sm_version);
}