Unverified Commit 86442530 authored by Christopher Chou's avatar Christopher Chou Committed by GitHub
Browse files

Yi-VL Model (#112)

parent 79cb018e
"""
Usage: python3 srt_example_yi_vl.py
"""
import sglang as sgl
@sgl.function
def image_qa(s, image_path, question):
s += sgl.user(sgl.image(image_path) + question)
s += sgl.assistant(sgl.gen("answer"))
def single():
state = image_qa.run(
image_path="images/cat.jpeg",
question="What is this?",
max_new_tokens=64,
stop="###")
print(state["answer"], "\n")
def stream():
state = image_qa.run(
image_path="images/cat.jpeg",
question="What is this?",
max_new_tokens=64,
stream=True,
stop="###")
for out in state.text_iter("answer"):
print(out, end="", flush=True)
print()
def batch():
states = image_qa.run_batch(
[
{"image_path": "images/cat.jpeg", "question":"What is this?"},
{"image_path": "images/dog.jpeg", "question":"What is this?"},
],
max_new_tokens=64,
stop="###"
)
for s in states:
print(s["answer"], "\n")
if __name__ == "__main__":
runtime = sgl.Runtime(model_path="BabyChou/Yi-VL-6B",
tokenizer_path="BabyChou/Yi-VL-6B")
sgl.set_default_backend(runtime)
# Or you can use API models
# sgl.set_default_backend(sgl.OpenAI("gpt-4-vision-preview"))
# sgl.set_default_backend(sgl.VertexAI("gemini-pro-vision"))
# Run a single request
print("\n========== single ==========\n")
single()
# Stream output
print("\n========== stream ==========\n")
stream()
# Run a batch of requests
print("\n========== batch ==========\n")
batch()
runtime.shutdown()
\ No newline at end of file
......@@ -146,6 +146,23 @@ register_chat_template(
)
)
# Reference: https://github.com/01-ai/Yi/tree/main/VL#major-difference-with-llava
register_chat_template(
ChatTemplate(
name="yi",
default_system_prompt=(
"This is a chat between an inquisitive human and an AI assistant. Assume the role of the AI assistant. Read all the images carefully, and respond to the human's questions with informative, helpful, detailed and polite answers."
"这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。"
),
role_prefix_and_suffix={
"system": ("", "\n\n"),
"user": ("### Human:", "\n"),
"assistant": ("### Assistant:", "\n"),
},
image_token=" <image_placeholder>\n",
)
)
@register_chat_template_matching_function
def match_vicuna(model_path: str):
......@@ -176,6 +193,12 @@ def match_chat_ml(model_path: str):
if "qwen" in model_path and "chat" in model_path:
return get_chat_template("chatml")
@register_chat_template_matching_function
def match_chat_yi(model_path: str):
model_path = model_path.lower()
if "yi" in model_path:
return get_chat_template("yi")
if __name__ == "__main__":
messages = [
......
"""Inference-only Yi-VL model."""
import os
from typing import List, Optional
import torch
import torch.nn as nn
from transformers import CLIPVisionModel, LlavaConfig
from vllm.model_executor.weight_utils import (
default_weight_loader,
hf_model_weights_iterator,
)
from sglang.srt.models.llava import LlavaLlamaForCausalLM, clip_vision_embed_forward, monkey_path_clip_vision_embed_forward
class YiVLForCausalLM(LlavaLlamaForCausalLM):
def __init__(self, *args, **kwargs):
self.config = kwargs["config"]
super().__init__(self.config)
self.multi_modal_projector = YiVLMultiModalProjector(self.config)
self.vision_tower_subfolder = self.config.mm_vision_tower.replace("./", "") # Everything after "./"
def load_weights(
self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None,
):
# We have to use the subfolder of the main model directory (e.g. 01-ai/Yi-VL-6B)
self.vision_tower = CLIPVisionModel.from_pretrained(
model_name_or_path, torch_dtype=torch.float16, subfolder=self.vision_tower_subfolder
).cuda()
self.vision_tower.eval()
self.vision_feature_layer = self.config.mm_vision_select_layer
self.vision_feature_select_strategy = self.config.mm_vision_select_feature
self.image_size = self.vision_tower.config.image_size
self.patch_size = self.vision_tower.config.patch_size
self.mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
self.image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
self.image_grid_pinpoints = getattr(self.config, "image_grid_pinpoints", None)
self.image_feature_len = int((self.image_size / self.patch_size) ** 2)
if self.vision_feature_select_strategy == "patch":
pass
elif self.vision_feature_select_strategy == "cls_patch":
self.image_feature_len += 1
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
# load mm_projector
# TODO: support TP?
projector_weights = {
"model.mm_projector.0": "multi_modal_projector.linear_1",
"model.mm_projector.1": "multi_modal_projector.ln_1",
"model.mm_projector.3": "multi_modal_projector.linear_2",
"model.mm_projector.4": "multi_modal_projector.ln_2",
"model.vision_tower.vision_tower": "vision_tower", # Update the vision tower weights if we find them in the checkpoint (it may be finetuned).
}
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision
):
if "projector" in name or "vision_tower" in name:
for weight_name, param_name in projector_weights.items():
if weight_name in name:
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
# load language model
self.language_model.load_weights(
model_name_or_path, cache_dir, load_format, revision
)
monkey_path_clip_vision_embed_forward()
class YiVLMultiModalProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size)
self.ln_1 = nn.LayerNorm(config.text_config.hidden_size)
self.act = nn.GELU()
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size)
self.ln_2 = nn.LayerNorm(config.text_config.hidden_size)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_state = self.ln_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.ln_2(hidden_states)
return hidden_states
EntryClass = YiVLForCausalLM
\ No newline at end of file
......@@ -233,11 +233,12 @@ def wrap_kernel_launcher(kernel):
def is_multimodal_model(model):
if isinstance(model, str):
return "llava" in model
return "llava" or "yi-vl" in model
from sglang.srt.model_config import ModelConfig
if isinstance(model, ModelConfig):
return "llava" in model.path.lower()
model_path = model.path.lower()
return "llava" in model_path or "yi-vl" in model_path
raise Exception("unrecognized type")
......
"""
Convert Yi-VL config into a format useable with SGLang
Usage: python3 scripts/convert_yi_vl.py --model-path <path-to-model>
"""
import argparse
import json
import os
from transformers import AutoConfig, AutoTokenizer
def add_image_token(model_path: str):
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.add_tokens(
["<image_placeholder>"],
special_tokens=True
)
print(tokenizer)
tokenizer.save_pretrained(model_path)
def edit_model_config(model_path):
config = AutoConfig.from_pretrained(model_path)
setattr(config, "architectures", ["YiVLForCausalLM"])
setattr(config, "image_token_index", 64002)
print(config)
config.save_pretrained(model_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str)
args = parser.parse_args()
add_image_token(args.model_path)
edit_model_config(args.model_path)
\ No newline at end of file
# For 34B Model
mkdir ~/model_weights
cd ~/model_weights
git clone https://huggingface.co/01-ai/Yi-VL-34B
cp ~/model_weights/Yi-VL-34B/vit/clip-vit-H-14-laion2B-s32B-b79K-yi-vl-34B-448/preprocessor_config.json ~/model_weights/Yi-VL-34B
python3 convert_yi_vl.py --model-path ~/model_weights/Yi-VL-34B
# For 6B Model
mkdir ~/model_weights
cd ~/model_weights
git clone https://huggingface.co/01-ai/Yi-VL-6B
cp ~/model_weights/Yi-VL-6B/vit/clip-vit-H-14-laion2B-s32B-b79K-yi-vl-6B-448/preprocessor_config.json ~/model_weights/Yi-VL-6B
python3 convert_yi_vl.py --model-path ~/model_weights/Yi-VL-6B
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment