openai_api_completions.ipynb 14.2 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
16
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
17
    "Check out other tutorials to learn about [vision APIs](openai_api_vision.ipynb) for vision-language models and [embedding APIs](openai_api_embeddings.ipynb) for embedding models."
Chayenne's avatar
Chayenne committed
18
19
20
21
22
23
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
24
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
25
    "\n",
26
    "Launch the server in your terminal and wait for it to initialize."
Chayenne's avatar
Chayenne committed
27
28
29
30
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
31
   "execution_count": null,
32
   "metadata": {},
Chayenne's avatar
Chayenne committed
33
   "outputs": [],
Chayenne's avatar
Chayenne committed
34
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    "from sglang.test.doc_patch import launch_server_cmd\n",
36
37
38
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
39
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
40
41
    ")\n",
    "\n",
42
43
    "wait_for_server(f\"http://localhost:{port}\")\n",
    "print(f\"Server started on http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
44
45
   ]
  },
46
47
48
49
50
51
52
53
54
55
56
57
58
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
59
60
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
61
   "execution_count": null,
62
   "metadata": {},
Chayenne's avatar
Chayenne committed
63
   "outputs": [],
Chayenne's avatar
Chayenne committed
64
65
66
   "source": [
    "import openai\n",
    "\n",
67
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
68
69
    "\n",
    "response = client.chat.completions.create(\n",
70
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
71
72
73
74
75
76
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
77
78
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
79
80
   ]
  },
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Model Thinking/Reasoning Support\n",
    "\n",
    "Some models support internal reasoning or thinking processes that can be exposed in the API response. SGLang provides unified support for various reasoning models through the `chat_template_kwargs` parameter and compatible reasoning parsers.\n",
    "\n",
    "#### Supported Models and Configuration\n",
    "\n",
    "| Model Family | Chat Template Parameter | Reasoning Parser | Notes |\n",
    "|--------------|------------------------|------------------|--------|\n",
    "| DeepSeek-R1 (R1, R1-0528, R1-Distill) | `enable_thinking` | `--reasoning-parser deepseek-r1` | Standard reasoning models |\n",
    "| DeepSeek-V3.1 | `thinking` | `--reasoning-parser deepseek-v3` | Hybrid model (thinking/non-thinking modes) |\n",
    "| Qwen3 (standard) | `enable_thinking` | `--reasoning-parser qwen3` | Hybrid model (thinking/non-thinking modes) |\n",
    "| Qwen3-Thinking | N/A (always enabled) | `--reasoning-parser qwen3-thinking` | Always generates reasoning |\n",
    "| Kimi | N/A (always enabled) | `--reasoning-parser kimi` | Kimi thinking models |\n",
    "| Gpt-Oss | N/A (always enabled) | `--reasoning-parser gpt-oss` | Gpt-Oss thinking models |\n",
    "\n",
    "#### Basic Usage\n",
    "\n",
    "To enable reasoning output, you need to:\n",
    "1. Launch the server with the appropriate reasoning parser\n",
    "2. Set the model-specific parameter in `chat_template_kwargs`\n",
    "3. Optionally use `separate_reasoning: False` to not get reasoning content separately (default to `True`)\n",
    "\n",
    "**Note for Qwen3-Thinking models:** These models always generate thinking content and do not support the `enable_thinking` parameter. Use `--reasoning-parser qwen3-thinking` or `--reasoning-parser qwen3` to parse the thinking content.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Example: Qwen3 Models\n",
    "\n",
    "```python\n",
    "# Launch server:\n",
118
    "# python3 -m sglang.launch_server --model Qwen/Qwen3-4B --reasoning-parser qwen3\n",
119
120
121
122
123
    "\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(\n",
    "    api_key=\"EMPTY\",\n",
124
    "    base_url=f\"http://127.0.0.1:30000/v1\",\n",
125
126
    ")\n",
    "\n",
127
128
    "model = \"Qwen/Qwen3-4B\"\n",
    "messages = [{\"role\": \"user\", \"content\": \"How many r's are in 'strawberry'?\"}]\n",
129
130
131
132
133
134
135
136
137
138
139
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=model,\n",
    "    messages=messages,\n",
    "    extra_body={\n",
    "        \"chat_template_kwargs\": {\"enable_thinking\": True},\n",
    "        \"separate_reasoning\": True\n",
    "    }\n",
    ")\n",
    "\n",
    "print(\"Reasoning:\", response.choices[0].message.reasoning_content)\n",
140
    "print(\"-\"*100)\n",
141
142
143
    "print(\"Answer:\", response.choices[0].message.content)\n",
    "```\n",
    "\n",
144
    "**ExampleOutput:**\n",
145
    "```\n",
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    "Reasoning: Okay, so the user is asking how many 'r's are in the word 'strawberry'. Let me think. First, I need to make sure I have the word spelled correctly. Strawberry... S-T-R-A-W-B-E-R-R-Y. Wait, is that right? Let me break it down.\n",
    "\n",
    "Starting with 'strawberry', let's write out the letters one by one. S, T, R, A, W, B, E, R, R, Y. Hmm, wait, that's 10 letters. Let me check again. S (1), T (2), R (3), A (4), W (5), B (6), E (7), R (8), R (9), Y (10). So the letters are S-T-R-A-W-B-E-R-R-Y. \n",
    "...\n",
    "Therefore, the answer should be three R's in 'strawberry'. But I need to make sure I'm not counting any other letters as R. Let me check again. S, T, R, A, W, B, E, R, R, Y. No other R's. So three in total. Yeah, that seems right.\n",
    "\n",
    "----------------------------------------------------------------------------------------------------\n",
    "Answer: The word \"strawberry\" contains **three** letters 'r'. Here's the breakdown:\n",
    "\n",
    "1. **S-T-R-A-W-B-E-R-R-Y**  \n",
    "   - The **third letter** is 'R'.  \n",
    "   - The **eighth and ninth letters** are also 'R's.  \n",
    "\n",
    "Thus, the total count is **3**.  \n",
    "\n",
    "**Answer:** 3.\n",
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    "```\n",
    "\n",
    "**Note:** Setting `\"enable_thinking\": False` (or omitting it) will result in `reasoning_content` being `None`. Qwen3-Thinking models always generate reasoning content and don't support the `enable_thinking` parameter.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Example: DeepSeek-V3 Models\n",
    "\n",
    "DeepSeek-V3 models support thinking mode through the `thinking` parameter:\n",
    "\n",
    "```python\n",
    "# Launch server:\n",
177
    "# python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-V3.1 --tp 8  --reasoning-parser deepseek-v3\n",
178
179
180
181
182
    "\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(\n",
    "    api_key=\"EMPTY\",\n",
183
    "    base_url=f\"http://127.0.0.1:30000/v1\",\n",
184
185
    ")\n",
    "\n",
186
187
    "model = \"deepseek-ai/DeepSeek-V3.1\"\n",
    "messages = [{\"role\": \"user\", \"content\": \"How many r's are in 'strawberry'?\"}]\n",
188
189
190
191
192
193
194
195
196
197
198
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=model,\n",
    "    messages=messages,\n",
    "    extra_body={\n",
    "        \"chat_template_kwargs\": {\"thinking\": True},\n",
    "        \"separate_reasoning\": True\n",
    "    }\n",
    ")\n",
    "\n",
    "print(\"Reasoning:\", response.choices[0].message.reasoning_content)\n",
199
    "print(\"-\"*100)\n",
200
201
202
    "print(\"Answer:\", response.choices[0].message.content)\n",
    "```\n",
    "\n",
203
    "**Example Output:**\n",
204
    "```\n",
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    "Reasoning: First, the question is: \"How many r's are in 'strawberry'?\"\n",
    "\n",
    "I need to count the number of times the letter 'r' appears in the word \"strawberry\".\n",
    "\n",
    "Let me write out the word: S-T-R-A-W-B-E-R-R-Y.\n",
    "\n",
    "Now, I'll go through each letter and count the 'r's.\n",
    "...\n",
    "So, I have three 'r's in \"strawberry\".\n",
    "\n",
    "I should double-check. The word is spelled S-T-R-A-W-B-E-R-R-Y. The letters are at positions: 3, 8, and 9 are 'r's. Yes, that's correct.\n",
    "\n",
    "Therefore, the answer should be 3.\n",
    "----------------------------------------------------------------------------------------------------\n",
    "Answer: The word \"strawberry\" contains **3** instances of the letter \"r\". Here's a breakdown for clarity:\n",
    "\n",
    "- The word is spelled: S-T-R-A-W-B-E-R-R-Y\n",
    "- The \"r\" appears at the 3rd, 8th, and 9th positions.\n",
223
224
225
226
227
    "```\n",
    "\n",
    "**Note:** DeepSeek-V3 models use the `thinking` parameter (not `enable_thinking`) to control reasoning output.\n"
   ]
  },
Chayenne's avatar
Chayenne committed
228
229
230
231
232
233
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
234
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
235
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    "SGLang extends the standard API with the `extra_body` parameter, allowing for additional customization. One key option within `extra_body` is `chat_template_kwargs`, which can be used to pass arguments to the chat template processor."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
    "    max_tokens=128,  # Reasonable length for a concise response\n",
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
267
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Streaming mode is also supported."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
   ]
  },
Chayenne's avatar
Chayenne committed
294
295
296
297
298
299
300
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
301
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
302
303
304
305
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
306
   "execution_count": null,
307
   "metadata": {},
Chayenne's avatar
Chayenne committed
308
   "outputs": [],
Chayenne's avatar
Chayenne committed
309
310
   "source": [
    "response = client.completions.create(\n",
311
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
312
313
314
315
316
317
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
318
319
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
320
321
322
323
324
325
326
327
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
328
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
329
330
331
332
333
334
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
335
   "execution_count": null,
336
   "metadata": {},
Chayenne's avatar
Chayenne committed
337
   "outputs": [],
Chayenne's avatar
Chayenne committed
338
339
   "source": [
    "response = client.completions.create(\n",
340
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
341
342
343
344
345
346
347
348
349
350
351
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
352
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
353
354
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
355
356
357
358
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
359
    "## Structured Outputs (JSON, Regex, EBNF)\n",
360
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
361
    "For OpenAI compatible structured outputs API, refer to [Structured Outputs](../advanced_features/structured_outputs.ipynb) for more details.\n"
362
363
   ]
  },
Chayenne's avatar
Chayenne committed
364
365
  {
   "cell_type": "code",
366
367
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
368
   "outputs": [],
Chayenne's avatar
Chayenne committed
369
   "source": [
370
    "terminate_process(server_process)"
Chayenne's avatar
Chayenne committed
371
372
373
374
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
375
376
377
378
379
380
381
382
383
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
384
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
385
386
387
388
389
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}