create_gt_database.py 12.4 KB
Newer Older
lishj6's avatar
init  
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright (c) OpenMMLab. All rights reserved.
import mmcv
import numpy as np
import pickle
from mmcv import track_iter_progress
from mmcv.ops import roi_align
from os import path as osp
from pycocotools import mask as maskUtils
from pycocotools.coco import COCO

from mmdet3d.core.bbox import box_np_ops as box_np_ops
from mmdet3d.datasets import build_dataset
from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps


def _poly2mask(mask_ann, img_h, img_w):
    if isinstance(mask_ann, list):
        # polygon -- a single object might consist of multiple parts
        # we merge all parts into one mask rle code
        rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
        rle = maskUtils.merge(rles)
    elif isinstance(mask_ann['counts'], list):
        # uncompressed RLE
        rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
    else:
        # rle
        rle = mask_ann
    mask = maskUtils.decode(rle)
    return mask


def _parse_coco_ann_info(ann_info):
    gt_bboxes = []
    gt_labels = []
    gt_bboxes_ignore = []
    gt_masks_ann = []

    for i, ann in enumerate(ann_info):
        if ann.get('ignore', False):
            continue
        x1, y1, w, h = ann['bbox']
        if ann['area'] <= 0:
            continue
        bbox = [x1, y1, x1 + w, y1 + h]
        if ann.get('iscrowd', False):
            gt_bboxes_ignore.append(bbox)
        else:
            gt_bboxes.append(bbox)
            gt_masks_ann.append(ann['segmentation'])

    if gt_bboxes:
        gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
        gt_labels = np.array(gt_labels, dtype=np.int64)
    else:
        gt_bboxes = np.zeros((0, 4), dtype=np.float32)
        gt_labels = np.array([], dtype=np.int64)

    if gt_bboxes_ignore:
        gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
    else:
        gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

    ann = dict(
        bboxes=gt_bboxes, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann)

    return ann


def crop_image_patch_v2(pos_proposals, pos_assigned_gt_inds, gt_masks):
    import torch
    from torch.nn.modules.utils import _pair
    device = pos_proposals.device
    num_pos = pos_proposals.size(0)
    fake_inds = (
        torch.arange(num_pos,
                     device=device).to(dtype=pos_proposals.dtype)[:, None])
    rois = torch.cat([fake_inds, pos_proposals], dim=1)  # Nx5
    mask_size = _pair(28)
    rois = rois.to(device=device)
    gt_masks_th = (
        torch.from_numpy(gt_masks).to(device).index_select(
            0, pos_assigned_gt_inds).to(dtype=rois.dtype))
    # Use RoIAlign could apparently accelerate the training (~0.1s/iter)
    targets = (
        roi_align(gt_masks_th, rois, mask_size[::-1], 1.0, 0, True).squeeze(1))
    return targets


def crop_image_patch(pos_proposals, gt_masks, pos_assigned_gt_inds, org_img):
    num_pos = pos_proposals.shape[0]
    masks = []
    img_patches = []
    for i in range(num_pos):
        gt_mask = gt_masks[pos_assigned_gt_inds[i]]
        bbox = pos_proposals[i, :].astype(np.int32)
        x1, y1, x2, y2 = bbox
        w = np.maximum(x2 - x1 + 1, 1)
        h = np.maximum(y2 - y1 + 1, 1)

        mask_patch = gt_mask[y1:y1 + h, x1:x1 + w]
        masked_img = gt_mask[..., None] * org_img
        img_patch = masked_img[y1:y1 + h, x1:x1 + w]

        img_patches.append(img_patch)
        masks.append(mask_patch)
    return img_patches, masks


def create_groundtruth_database(dataset_class_name,
                                data_path,
                                info_prefix,
                                info_path=None,
                                mask_anno_path=None,
                                used_classes=None,
                                database_save_path=None,
                                db_info_save_path=None,
                                relative_path=True,
                                add_rgb=False,
                                lidar_only=False,
                                bev_only=False,
                                coors_range=None,
                                with_mask=False):
    """Given the raw data, generate the ground truth database.

    Args:
        dataset_class_name (str): Name of the input dataset.
        data_path (str): Path of the data.
        info_prefix (str): Prefix of the info file.
        info_path (str): Path of the info file.
            Default: None.
        mask_anno_path (str): Path of the mask_anno.
            Default: None.
        used_classes (list[str]): Classes have been used.
            Default: None.
        database_save_path (str): Path to save database.
            Default: None.
        db_info_save_path (str): Path to save db_info.
            Default: None.
        relative_path (bool): Whether to use relative path.
            Default: True.
        with_mask (bool): Whether to use mask.
            Default: False.
    """
    print(f'Create GT Database of {dataset_class_name}')
    dataset_cfg = dict(
        type=dataset_class_name, data_root=data_path, ann_file=info_path)
    if dataset_class_name == 'KittiDataset':
        file_client_args = dict(backend='disk')
        dataset_cfg.update(
            test_mode=False,
            split='training',
            modality=dict(
                use_lidar=True,
                use_depth=False,
                use_lidar_intensity=True,
                use_camera=with_mask,
            ),
            pipeline=[
                dict(
                    type='LoadPointsFromFile',
                    coord_type='LIDAR',
                    load_dim=4,
                    use_dim=4,
                    file_client_args=file_client_args),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True,
                    file_client_args=file_client_args)
            ])

    elif dataset_class_name == 'NuScenesDataset':
        dataset_cfg.update(
            use_valid_flag=True,
            pipeline=[
                dict(
                    type='LoadPointsFromFile',
                    coord_type='LIDAR',
                    load_dim=5,
                    use_dim=5),
                dict(
                    type='LoadPointsFromMultiSweeps',
                    sweeps_num=10,
                    use_dim=[0, 1, 2, 3, 4],
                    pad_empty_sweeps=True,
                    remove_close=True),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True)
            ])

    elif dataset_class_name == 'WaymoDataset':
        file_client_args = dict(backend='disk')
        dataset_cfg.update(
            test_mode=False,
            split='training',
            modality=dict(
                use_lidar=True,
                use_depth=False,
                use_lidar_intensity=True,
                use_camera=False,
            ),
            pipeline=[
                dict(
                    type='LoadPointsFromFile',
                    coord_type='LIDAR',
                    load_dim=6,
                    use_dim=5,
                    file_client_args=file_client_args),
                dict(
                    type='LoadAnnotations3D',
                    with_bbox_3d=True,
                    with_label_3d=True,
                    file_client_args=file_client_args)
            ])

    dataset = build_dataset(dataset_cfg)

    if database_save_path is None:
        database_save_path = osp.join(data_path, f'{info_prefix}_gt_database')
    if db_info_save_path is None:
        db_info_save_path = osp.join(data_path,
                                     f'{info_prefix}_dbinfos_train.pkl')
    mmcv.mkdir_or_exist(database_save_path)
    all_db_infos = dict()
    if with_mask:
        coco = COCO(osp.join(data_path, mask_anno_path))
        imgIds = coco.getImgIds()
        file2id = dict()
        for i in imgIds:
            info = coco.loadImgs([i])[0]
            file2id.update({info['file_name']: i})

    group_counter = 0
    for j in track_iter_progress(list(range(len(dataset)))):
        input_dict = dataset.get_data_info(j)
        dataset.pre_pipeline(input_dict)
        example = dataset.pipeline(input_dict)
        annos = example['ann_info']
        image_idx = example['sample_idx']
        points = example['points'].tensor.numpy()
        gt_boxes_3d = annos['gt_bboxes_3d'].tensor.numpy()
        names = annos['gt_names']
        group_dict = dict()
        if 'group_ids' in annos:
            group_ids = annos['group_ids']
        else:
            group_ids = np.arange(gt_boxes_3d.shape[0], dtype=np.int64)
        difficulty = np.zeros(gt_boxes_3d.shape[0], dtype=np.int32)
        if 'difficulty' in annos:
            difficulty = annos['difficulty']

        num_obj = gt_boxes_3d.shape[0]
        point_indices = box_np_ops.points_in_rbbox(points, gt_boxes_3d)

        if with_mask:
            # prepare masks
            gt_boxes = annos['gt_bboxes']
            img_path = osp.split(example['img_info']['filename'])[-1]
            if img_path not in file2id.keys():
                print(f'skip image {img_path} for empty mask')
                continue
            img_id = file2id[img_path]
            kins_annIds = coco.getAnnIds(imgIds=img_id)
            kins_raw_info = coco.loadAnns(kins_annIds)
            kins_ann_info = _parse_coco_ann_info(kins_raw_info)
            h, w = annos['img_shape'][:2]
            gt_masks = [
                _poly2mask(mask, h, w) for mask in kins_ann_info['masks']
            ]
            # get mask inds based on iou mapping
            bbox_iou = bbox_overlaps(kins_ann_info['bboxes'], gt_boxes)
            mask_inds = bbox_iou.argmax(axis=0)
            valid_inds = (bbox_iou.max(axis=0) > 0.5)

            # mask the image
            # use more precise crop when it is ready
            # object_img_patches = np.ascontiguousarray(
            #     np.stack(object_img_patches, axis=0).transpose(0, 3, 1, 2))
            # crop image patches using roi_align
            # object_img_patches = crop_image_patch_v2(
            #     torch.Tensor(gt_boxes),
            #     torch.Tensor(mask_inds).long(), object_img_patches)
            object_img_patches, object_masks = crop_image_patch(
                gt_boxes, gt_masks, mask_inds, annos['img'])

        for i in range(num_obj):
            filename = f'{image_idx}_{names[i]}_{i}.bin'
            abs_filepath = osp.join(database_save_path, filename)
            rel_filepath = osp.join(f'{info_prefix}_gt_database', filename)

            # save point clouds and image patches for each object
            gt_points = points[point_indices[:, i]]
            gt_points[:, :3] -= gt_boxes_3d[i, :3]

            if with_mask:
                if object_masks[i].sum() == 0 or not valid_inds[i]:
                    # Skip object for empty or invalid mask
                    continue
                img_patch_path = abs_filepath + '.png'
                mask_patch_path = abs_filepath + '.mask.png'
                mmcv.imwrite(object_img_patches[i], img_patch_path)
                mmcv.imwrite(object_masks[i], mask_patch_path)

            with open(abs_filepath, 'w') as f:
                gt_points.tofile(f)

            if (used_classes is None) or names[i] in used_classes:
                db_info = {
                    'name': names[i],
                    'path': rel_filepath,
                    'image_idx': image_idx,
                    'gt_idx': i,
                    'box3d_lidar': gt_boxes_3d[i],
                    'num_points_in_gt': gt_points.shape[0],
                    'difficulty': difficulty[i],
                }
                local_group_id = group_ids[i]
                # if local_group_id >= 0:
                if local_group_id not in group_dict:
                    group_dict[local_group_id] = group_counter
                    group_counter += 1
                db_info['group_id'] = group_dict[local_group_id]
                if 'score' in annos:
                    db_info['score'] = annos['score'][i]
                if with_mask:
                    db_info.update({'box2d_camera': gt_boxes[i]})
                if names[i] in all_db_infos:
                    all_db_infos[names[i]].append(db_info)
                else:
                    all_db_infos[names[i]] = [db_info]

    for k, v in all_db_infos.items():
        print(f'load {len(v)} {k} database infos')

    with open(db_info_save_path, 'wb') as f:
        pickle.dump(all_db_infos, f)