grid_mask.py 3.84 KB
Newer Older
lishj6's avatar
init  
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
from mmcv.runner import force_fp32, auto_fp16

class Grid(object):
    def __init__(self, use_h, use_w, rotate = 1, offset=False, ratio = 0.5, mode=0, prob = 1.):
        self.use_h = use_h
        self.use_w = use_w
        self.rotate = rotate
        self.offset = offset
        self.ratio = ratio
        self.mode=mode
        self.st_prob = prob
        self.prob = prob

    def set_prob(self, epoch, max_epoch):
        self.prob = self.st_prob * epoch / max_epoch

    def __call__(self, img, label):
        if np.random.rand() > self.prob:
            return img, label
        h = img.size(1)
        w = img.size(2)
        self.d1 = 2
        self.d2 = min(h, w)
        hh = int(1.5*h)
        ww = int(1.5*w)
        d = np.random.randint(self.d1, self.d2)
        if self.ratio == 1:
            self.l = np.random.randint(1, d)
        else:
            self.l = min(max(int(d*self.ratio+0.5),1),d-1)
        mask = np.ones((hh, ww), np.float32)
        st_h = np.random.randint(d)
        st_w = np.random.randint(d)
        if self.use_h:
            for i in range(hh//d):
                s = d*i + st_h
                t = min(s+self.l, hh)
                mask[s:t,:] *= 0
        if self.use_w:
            for i in range(ww//d):
                s = d*i + st_w
                t = min(s+self.l, ww)
                mask[:,s:t] *= 0
       
        r = np.random.randint(self.rotate)
        mask = Image.fromarray(np.uint8(mask))
        mask = mask.rotate(r)
        mask = np.asarray(mask)
        mask = mask[(hh-h)//2:(hh-h)//2+h, (ww-w)//2:(ww-w)//2+w]

        mask = torch.from_numpy(mask).float()
        if self.mode == 1:
            mask = 1-mask

        mask = mask.expand_as(img)
        if self.offset:
            offset = torch.from_numpy(2 * (np.random.rand(h,w) - 0.5)).float()
            offset = (1 - mask) * offset
            img = img * mask + offset
        else:
            img = img * mask 

        return img, label


class GridMask(nn.Module):
    def __init__(self, use_h, use_w, rotate = 1, offset=False, ratio = 0.5, mode=0, prob = 1.):
        super(GridMask, self).__init__()
        self.use_h = use_h
        self.use_w = use_w
        self.rotate = rotate
        self.offset = offset
        self.ratio = ratio
        self.mode = mode
        self.st_prob = prob
        self.prob = prob
        self.fp16_enable = False
    def set_prob(self, epoch, max_epoch):
        self.prob = self.st_prob * epoch / max_epoch #+ 1.#0.5
    @auto_fp16()
    def forward(self, x):
        if np.random.rand() > self.prob or not self.training:
            return x
        n,c,h,w = x.size()
        x = x.view(-1,h,w)
        hh = int(1.5*h)
        ww = int(1.5*w)
        d = np.random.randint(2, h)
        self.l = min(max(int(d*self.ratio+0.5),1),d-1)
        mask = np.ones((hh, ww), np.float32)
        st_h = np.random.randint(d)
        st_w = np.random.randint(d)
        if self.use_h:
            for i in range(hh//d):
                s = d*i + st_h
                t = min(s+self.l, hh)
                mask[s:t,:] *= 0
        if self.use_w:
            for i in range(ww//d):
                s = d*i + st_w
                t = min(s+self.l, ww)
                mask[:,s:t] *= 0
       
        r = np.random.randint(self.rotate)
        mask = Image.fromarray(np.uint8(mask))
        mask = mask.rotate(r)
        mask = np.asarray(mask)
        mask = mask[(hh-h)//2:(hh-h)//2+h, (ww-w)//2:(ww-w)//2+w]

        mask = torch.from_numpy(mask).to(x.dtype).cuda()
        if self.mode == 1:
            mask = 1-mask
        mask = mask.expand_as(x)
        if self.offset:
            offset = torch.from_numpy(2 * (np.random.rand(h,w) - 0.5)).to(x.dtype).cuda()
            x = x * mask + offset * (1 - mask)
        else:
            x = x * mask 
        
        return x.view(n,c,h,w)