geometry.py 6.05 KB
Newer Older
lishj6's avatar
init  
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright 2021 Toyota Research Institute.  All rights reserved.
import logging

import cv2
import numpy as np
import torch
import torch.nn.functional as F

LOG = logging.getLogger(__name__)

PI = 3.14159265358979323846
EPS = 1e-7

def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    """
    Returns torch.sqrt(torch.max(0, x))
    but with a zero subgradient where x is 0.
    """
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    ret[positive_mask] = torch.sqrt(x[positive_mask])
    return ret

def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to quaternions.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        quaternions with real part first, as tensor of shape (..., 4).
    """
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(batch_dim + (9,)), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    # we produce the desired quaternion multiplied by each of r, i, j, k
    quat_by_rijk = torch.stack(
        [
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
    # the candidate won't be picked.
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))

    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
    # forall i; we pick the best-conditioned one (with the largest denominator)

    return quat_candidates[
        F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :  # pyre-ignore[16]
    ].reshape(batch_dim + (4,))

def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as quaternions to rotation matrices.

    Args:
        quaternions: quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    r, i, j, k = torch.unbind(quaternions, -1)
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))

def allocentric_to_egocentric(quat, proj_ctr, inv_intrinsics):
    """
    Parameters
    ----------
    quat: Tensor
        (N, 4). Batch of (allocentric) quaternions.

    proj_ctr: Tensor
        (N, 2). Projected centers. xy coordninates.

    inv_intrinsics: [type]
        (N, 3, 3). Inverted intrinsics.
    """
    R_obj_to_local = quaternion_to_matrix(quat)

    # ray == z-axis in local orientaion
    ray = unproject_points2d(proj_ctr, inv_intrinsics)
    z = ray / ray.norm(dim=1, keepdim=True)

    # gram-schmit process: local_y = global_y - global_y \dot local_z
    y = z.new_tensor([[0., 1., 0.]]) - z[:, 1:2] * z
    y = y / y.norm(dim=1, keepdim=True)
    x = torch.cross(y, z, dim=1)

    # local -> global
    R_local_to_global = torch.stack([x, y, z], dim=-1)

    # obj -> global
    R_obj_to_global = torch.bmm(R_local_to_global, R_obj_to_local)

    egocentric_quat = matrix_to_quaternion(R_obj_to_global)

    # Make sure it's unit norm.
    quat_norm = egocentric_quat.norm(dim=1, keepdim=True)
    if not torch.allclose(quat_norm, torch.as_tensor(1.), atol=1e-3):
        LOG.warning(
            f"Some of the input quaternions are not unit norm: min={quat_norm.min()}, max={quat_norm.max()}; therefore normalizing."
        )
        egocentric_quat = egocentric_quat / quat_norm.clamp(min=EPS)

    return egocentric_quat


def homogenize_points(xy):
    """
    Parameters
    ----------
    xy: Tensor
        xy coordinates. shape=(N, ..., 2)
        E.g., (N, 2) or (N, K, 2) or (N, H, W, 2)

    Returns
    -------
    Tensor:
        1. is appended to the last dimension. shape=(N, ..., 3)
        E.g, (N, 3) or (N, K, 3) or (N, H, W, 3).
    """
    # NOTE: this seems to work for arbitrary number of dimensions of input
    pad = torch.nn.ConstantPad1d(padding=(0, 1), value=1.)
    return pad(xy)


def project_points3d(Xw, K):
    _, C = Xw.shape
    assert C == 3
    uv, _ = cv2.projectPoints(
        Xw, np.zeros((3, 1), dtype=np.float32), np.zeros(3, dtype=np.float32), K, np.zeros(5, dtype=np.float32)
    )
    return uv.reshape(-1, 2)


def unproject_points2d(points2d, inv_K, scale=1.0):
    """
    Parameters
    ----------
    points2d: Tensor
        xy coordinates. shape=(N, ..., 2)
        E.g., (N, 2) or (N, K, 2) or (N, H, W, 2)

    inv_K: Tensor
        Inverted intrinsics; shape=(N, 3, 3)

    scale: float, default: 1.0
        Scaling factor.

    Returns
    -------
    Tensor:
        Unprojected 3D point. shape=(N, ..., 3)
        E.g., (N, 3) or (N, K, 3) or (N, H, W, 3)
    """
    points2d = homogenize_points(points2d)
    siz = points2d.size()
    points2d = points2d.view(-1, 3).unsqueeze(-1)  # (N, 3, 1)
    unprojected = torch.matmul(inv_K, points2d)  # (N, 3, 3) x (N, 3, 1) -> (N, 3, 1)
    unprojected = unprojected.view(siz)

    return unprojected * scale