fcos3d.py 19 KB
Newer Older
lishj6's avatar
init  
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# Copyright 2021 Toyota Research Institute.  All rights reserved.
import torch
import torch.nn.functional as F
from torch import nn

from detectron2.layers import Conv2d, cat, get_norm
from mmcv.runner import force_fp32

from projects.mmdet3d_plugin.dd3d.layers.normalization import ModuleListDial, Offset, Scale
from .disentangled_box3d_loss import DisentangledBox3DLoss
from projects.mmdet3d_plugin.dd3d.structures.boxes3d import Boxes3D
from projects.mmdet3d_plugin.dd3d.utils.geometry import allocentric_to_egocentric, unproject_points2d

EPS = 1e-7


def predictions_to_boxes3d(
    quat,
    proj_ctr,
    depth,
    size,
    locations,
    inv_intrinsics,
    canon_box_sizes,
    min_depth,
    max_depth,
    scale_depth_by_focal_lengths_factor,
    scale_depth_by_focal_lengths=True,
    quat_is_allocentric=True,
    depth_is_distance=False
):
    # Normalize to make quat unit norm.
    quat = quat / quat.norm(dim=1, keepdim=True).clamp(min=EPS)
    # Make sure again it's numerically unit-norm.
    quat = quat / quat.norm(dim=1, keepdim=True)

    if scale_depth_by_focal_lengths:
        pixel_size = torch.norm(torch.stack([inv_intrinsics[:, 0, 0], inv_intrinsics[:, 1, 1]], dim=-1), dim=-1)
        depth = depth / (pixel_size * scale_depth_by_focal_lengths_factor)

    if depth_is_distance:
        depth = depth / unproject_points2d(locations, inv_intrinsics).norm(dim=1).clamp(min=EPS)

    depth = depth.reshape(-1, 1).clamp(min_depth, max_depth)

    proj_ctr = proj_ctr + locations

    if quat_is_allocentric:
        quat = allocentric_to_egocentric(quat, proj_ctr, inv_intrinsics)

    size = (size.tanh() + 1.) * canon_box_sizes  # max size = 2 * canon_size

    return Boxes3D(quat, proj_ctr, depth, size, inv_intrinsics)


class FCOS3DHead(nn.Module):
    def __init__(self, 
                 num_classes,
                 input_shape,
                 num_convs=4,
                 norm='BN',
                 use_scale=True,
                 depth_scale_init_factor=0.3,
                 proj_ctr_scale_init_factor=1.0,
                 use_per_level_predictors=False,
                 class_agnostic=False,
                 use_deformable=False,
                 mean_depth_per_level=None,
                 std_depth_per_level=None,
                 ):
        super().__init__()
        self.num_classes = num_classes
        self.in_strides = [shape.stride for shape in input_shape]
        self.num_levels = len(input_shape)

        self.use_scale = use_scale
        self.depth_scale_init_factor = depth_scale_init_factor
        self.proj_ctr_scale_init_factor = proj_ctr_scale_init_factor
        self.use_per_level_predictors = use_per_level_predictors

        self.register_buffer("mean_depth_per_level", torch.Tensor(mean_depth_per_level))
        self.register_buffer("std_depth_per_level", torch.Tensor(std_depth_per_level))

        in_channels = [s.channels for s in input_shape]
        assert len(set(in_channels)) == 1, "Each level must have the same channel!"
        in_channels = in_channels[0]

        if use_deformable:
            raise ValueError("Not supported yet.")

        box3d_tower = []
        for i in range(num_convs):
            if norm in ("BN", "FrozenBN", "SyncBN", "GN"):
                # NOTE: need to add norm here!
                # Each FPN level has its own batchnorm layer.
                # NOTE: do not use dd3d train.py!
                # "BN" is converted to "SyncBN" in distributed training (see train.py)
                norm_layer = ModuleListDial([get_norm(norm, in_channels) for _ in range(self.num_levels)])
            else:
                norm_layer = get_norm(norm, in_channels)
            box3d_tower.append(
                Conv2d(
                    in_channels,
                    in_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=norm_layer is None,
                    norm=norm_layer,
                    activation=F.relu
                )
            )
        self.add_module('box3d_tower', nn.Sequential(*box3d_tower))

        num_classes = self.num_classes if not class_agnostic else 1
        num_levels = self.num_levels if use_per_level_predictors else 1

        # 3D box branches.
        self.box3d_quat = nn.ModuleList([
            Conv2d(in_channels, 4 * num_classes, kernel_size=3, stride=1, padding=1, bias=True)
            for _ in range(num_levels)
        ])
        self.box3d_ctr = nn.ModuleList([
            Conv2d(in_channels, 2 * num_classes, kernel_size=3, stride=1, padding=1, bias=True)
            for _ in range(num_levels)
        ])
        self.box3d_depth = nn.ModuleList([
            Conv2d(in_channels, 1 * num_classes, kernel_size=3, stride=1, padding=1, bias=(not self.use_scale))
            for _ in range(num_levels)
        ])
        self.box3d_size = nn.ModuleList([
            Conv2d(in_channels, 3 * num_classes, kernel_size=3, stride=1, padding=1, bias=True)
            for _ in range(num_levels)
        ])
        self.box3d_conf = nn.ModuleList([
            Conv2d(in_channels, 1 * num_classes, kernel_size=3, stride=1, padding=1, bias=True)
            for _ in range(num_levels)
        ])

        if self.use_scale:
            self.scales_proj_ctr = nn.ModuleList([
                Scale(init_value=stride * self.proj_ctr_scale_init_factor) for stride in self.in_strides
            ])
            # (pre-)compute (mean, std) of depth for each level, and determine the init value here.
            self.scales_size = nn.ModuleList([Scale(init_value=1.0) for _ in range(self.num_levels)])
            self.scales_conf = nn.ModuleList([Scale(init_value=1.0) for _ in range(self.num_levels)])

            self.scales_depth = nn.ModuleList([
                Scale(init_value=sigma * self.depth_scale_init_factor) for sigma in self.std_depth_per_level
            ])
            self.offsets_depth = nn.ModuleList([Offset(init_value=b) for b in self.mean_depth_per_level])

        self._init_weights()

    def _init_weights(self):

        for l in self.box3d_tower.modules():
            if isinstance(l, nn.Conv2d):
                torch.nn.init.kaiming_normal_(l.weight, mode='fan_out', nonlinearity='relu')
                if l.bias is not None:
                    torch.nn.init.constant_(l.bias, 0)

        predictors = [self.box3d_quat, self.box3d_ctr, self.box3d_depth, self.box3d_size, self.box3d_conf]

        for modules in predictors:
            for l in modules.modules():
                if isinstance(l, nn.Conv2d):
                    torch.nn.init.kaiming_uniform_(l.weight, a=1)
                    if l.bias is not None:  # depth head may not have bias.
                        torch.nn.init.constant_(l.bias, 0)

    def forward(self, x):
        box3d_quat, box3d_ctr, box3d_depth, box3d_size, box3d_conf = [], [], [], [], []
        dense_depth = None
        for l, features in enumerate(x):
            box3d_tower_out = self.box3d_tower(features)

            _l = l if self.use_per_level_predictors else 0

            # 3D box
            quat = self.box3d_quat[_l](box3d_tower_out)
            proj_ctr = self.box3d_ctr[_l](box3d_tower_out)
            depth = self.box3d_depth[_l](box3d_tower_out)
            size3d = self.box3d_size[_l](box3d_tower_out)
            conf3d = self.box3d_conf[_l](box3d_tower_out)

            if self.use_scale:
                # TODO: to optimize the runtime, apply this scaling in inference (and loss compute) only on FG pixels?
                proj_ctr = self.scales_proj_ctr[l](proj_ctr)
                size3d = self.scales_size[l](size3d)
                conf3d = self.scales_conf[l](conf3d)
                depth = self.offsets_depth[l](self.scales_depth[l](depth))

            box3d_quat.append(quat)
            box3d_ctr.append(proj_ctr)
            box3d_depth.append(depth)
            box3d_size.append(size3d)
            box3d_conf.append(conf3d)

        return box3d_quat, box3d_ctr, box3d_depth, box3d_size, box3d_conf, dense_depth


class FCOS3DLoss(nn.Module):
    def __init__(self, 
                 num_classes,
                 min_depth=0.1,
                 max_depth=80.0,
                 box3d_loss_weight=2.0,
                 conf3d_loss_weight=1.0,
                 conf_3d_temperature=1.0,
                 smooth_l1_loss_beta=0.05, 
                 max_loss_per_group=20,
                 predict_allocentric_rot=True,
                 scale_depth_by_focal_lengths=True,
                 scale_depth_by_focal_lengths_factor=500.0,
                 class_agnostic=False,
                 predict_distance=False,
                 canon_box_sizes=None):
        super().__init__()
        self.canon_box_sizes = canon_box_sizes
        self.min_depth = min_depth
        self.max_depth = max_depth
        self.predict_allocentric_rot = predict_allocentric_rot
        self.scale_depth_by_focal_lengths = scale_depth_by_focal_lengths
        self.scale_depth_by_focal_lengths_factor = scale_depth_by_focal_lengths_factor
        self.predict_distance = predict_distance

        self.box3d_reg_loss_fn = DisentangledBox3DLoss(smooth_l1_loss_beta, max_loss_per_group)
        self.box3d_loss_weight = box3d_loss_weight
        self.conf3d_loss_weight = conf3d_loss_weight
        self.conf_3d_temperature = conf_3d_temperature

        self.num_classes = num_classes
        self.class_agnostic = class_agnostic

    @force_fp32(apply_to=('box3d_quat', 'box3d_ctr', 'box3d_depth', 'box3d_size','box3d_conf', 'inv_intrinsics'))
    def forward(
        self, box3d_quat, box3d_ctr, box3d_depth, box3d_size, box3d_conf, dense_depth, inv_intrinsics, fcos2d_info,
        targets
    ):
        labels = targets['labels']
        box3d_targets = targets['box3d_targets']
        pos_inds = targets["pos_inds"]

        if pos_inds.numel() == 0:
            losses = {
                "loss_box3d_quat": torch.stack([x.sum() * 0. for x in box3d_quat]).sum(), 
                "loss_box3d_proj_ctr": torch.stack([x.sum() * 0. for x in box3d_ctr]).sum(),
                "loss_box3d_depth": torch.stack([x.sum() * 0. for x in box3d_depth]).sum(),
                "loss_box3d_size": torch.stack([x.sum() * 0. for x in box3d_size]).sum(),
                "loss_conf3d": torch.stack([x.sum() * 0. for x in box3d_conf]).sum()
            }
            return losses

        if len(labels) != len(box3d_targets):
            raise ValueError(
                f"The size of 'labels' and 'box3d_targets' does not match: a={len(labels)}, b={len(box3d_targets)}"
            )

        num_classes = self.num_classes if not self.class_agnostic else 1

        box3d_quat_pred = cat([x.permute(0, 2, 3, 1).reshape(-1, 4, num_classes) for x in box3d_quat])
        box3d_ctr_pred = cat([x.permute(0, 2, 3, 1).reshape(-1, 2, num_classes) for x in box3d_ctr])
        box3d_depth_pred = cat([x.permute(0, 2, 3, 1).reshape(-1, num_classes) for x in box3d_depth])
        box3d_size_pred = cat([x.permute(0, 2, 3, 1).reshape(-1, 3, num_classes) for x in box3d_size])
        box3d_conf_pred = cat([x.permute(0, 2, 3, 1).reshape(-1, num_classes) for x in box3d_conf])

        # ----------------------
        # 3D box disentangled loss
        # ----------------------
        box3d_targets = box3d_targets[pos_inds]

        box3d_quat_pred = box3d_quat_pred[pos_inds]
        box3d_ctr_pred = box3d_ctr_pred[pos_inds]
        box3d_depth_pred = box3d_depth_pred[pos_inds]
        box3d_size_pred = box3d_size_pred[pos_inds]
        box3d_conf_pred = box3d_conf_pred[pos_inds]

        if self.class_agnostic:
            box3d_quat_pred = box3d_quat_pred.squeeze(-1)
            box3d_ctr_pred = box3d_ctr_pred.squeeze(-1)
            box3d_depth_pred = box3d_depth_pred.squeeze(-1)
            box3d_size_pred = box3d_size_pred.squeeze(-1)
            box3d_conf_pred = box3d_conf_pred.squeeze(-1)
        else:
            I = labels[pos_inds][..., None, None]
            box3d_quat_pred = torch.gather(box3d_quat_pred, dim=2, index=I.repeat(1, 4, 1)).squeeze(-1)
            box3d_ctr_pred = torch.gather(box3d_ctr_pred, dim=2, index=I.repeat(1, 2, 1)).squeeze(-1)
            box3d_depth_pred = torch.gather(box3d_depth_pred, dim=1, index=I.squeeze(-1)).squeeze(-1)
            box3d_size_pred = torch.gather(box3d_size_pred, dim=2, index=I.repeat(1, 3, 1)).squeeze(-1)
            box3d_conf_pred = torch.gather(box3d_conf_pred, dim=1, index=I.squeeze(-1)).squeeze(-1)

        canon_box_sizes = box3d_quat_pred.new_tensor(self.canon_box_sizes)[labels[pos_inds]]

        locations = targets["locations"][pos_inds]
        im_inds = targets["im_inds"][pos_inds]
        inv_intrinsics = inv_intrinsics[im_inds]

        box3d_pred = predictions_to_boxes3d(
            box3d_quat_pred,
            box3d_ctr_pred,
            box3d_depth_pred,
            box3d_size_pred,
            locations,
            inv_intrinsics,
            canon_box_sizes,
            self.min_depth,
            self.max_depth,
            scale_depth_by_focal_lengths_factor=self.scale_depth_by_focal_lengths_factor,
            scale_depth_by_focal_lengths=self.scale_depth_by_focal_lengths,
            quat_is_allocentric=self.predict_allocentric_rot,
            depth_is_distance=self.predict_distance
        )

        centerness_targets = fcos2d_info["centerness_targets"]
        loss_denom = fcos2d_info["loss_denom"]
        losses_box3d, box3d_l1_error = self.box3d_reg_loss_fn(box3d_pred, box3d_targets, locations, centerness_targets)

        losses_box3d = {k: self.box3d_loss_weight * v / loss_denom for k, v in losses_box3d.items()}

        conf_3d_targets = torch.exp(-1. / self.conf_3d_temperature * box3d_l1_error)
        loss_conf3d = F.binary_cross_entropy_with_logits(box3d_conf_pred, conf_3d_targets, reduction='none')
        loss_conf3d = self.conf3d_loss_weight * (loss_conf3d * centerness_targets).sum() / loss_denom

        losses = {"loss_conf3d": loss_conf3d, **losses_box3d}

        return losses


class FCOS3DInference():
    def __init__(self, cfg):
        self.canon_box_sizes = cfg.DD3D.FCOS3D.CANONICAL_BOX3D_SIZES
        self.min_depth = cfg.DD3D.FCOS3D.MIN_DEPTH
        self.max_depth = cfg.DD3D.FCOS3D.MAX_DEPTH
        self.predict_allocentric_rot = cfg.DD3D.FCOS3D.PREDICT_ALLOCENTRIC_ROT
        self.scale_depth_by_focal_lengths = cfg.DD3D.FCOS3D.SCALE_DEPTH_BY_FOCAL_LENGTHS
        self.scale_depth_by_focal_lengths_factor = cfg.DD3D.FCOS3D.SCALE_DEPTH_BY_FOCAL_LENGTHS_FACTOR
        self.predict_distance = cfg.DD3D.FCOS3D.PREDICT_DISTANCE

        self.num_classes = cfg.DD3D.NUM_CLASSES
        self.class_agnostic = cfg.DD3D.FCOS3D.CLASS_AGNOSTIC_BOX3D

    def __call__(
        self, box3d_quat, box3d_ctr, box3d_depth, box3d_size, box3d_conf, inv_intrinsics, pred_instances, fcos2d_info
    ):
        # pred_instances: # List[List[Instances]], shape = (L, B)
        for lvl, (box3d_quat_lvl, box3d_ctr_lvl, box3d_depth_lvl, box3d_size_lvl, box3d_conf_lvl) in \
            enumerate(zip(box3d_quat, box3d_ctr, box3d_depth, box3d_size, box3d_conf)):

            # In-place modification: update per-level pred_instances.
            self.forward_for_single_feature_map(
                box3d_quat_lvl, box3d_ctr_lvl, box3d_depth_lvl, box3d_size_lvl, box3d_conf_lvl, inv_intrinsics,
                pred_instances[lvl], fcos2d_info[lvl]
            )  # List of Instances; one for each image.

    def forward_for_single_feature_map(
        self, box3d_quat, box3d_ctr, box3d_depth, box3d_size, box3d_conf, inv_intrinsics, pred_instances, fcos2d_info
    ):
        N = box3d_quat.shape[0]

        num_classes = self.num_classes if not self.class_agnostic else 1

        box3d_quat = box3d_quat.permute(0, 2, 3, 1).reshape(N, -1, 4, num_classes)
        box3d_ctr = box3d_ctr.permute(0, 2, 3, 1).reshape(N, -1, 2, num_classes)
        box3d_depth = box3d_depth.permute(0, 2, 3, 1).reshape(N, -1, num_classes)
        box3d_size = box3d_size.permute(0, 2, 3, 1).reshape(N, -1, 3, num_classes)
        box3d_conf = box3d_conf.permute(0, 2, 3, 1).reshape(N, -1, num_classes).sigmoid()

        for i in range(N):
            fg_inds_per_im = fcos2d_info['fg_inds_per_im'][i]
            class_inds_per_im = fcos2d_info['class_inds_per_im'][i]
            topk_indices = fcos2d_info['topk_indices'][i]

            box3d_quat_per_im = box3d_quat[i][fg_inds_per_im]
            box3d_ctr_per_im = box3d_ctr[i][fg_inds_per_im]
            box3d_depth_per_im = box3d_depth[i][fg_inds_per_im]
            box3d_size_per_im = box3d_size[i][fg_inds_per_im]
            box3d_conf_per_im = box3d_conf[i][fg_inds_per_im]

            if self.class_agnostic:
                box3d_quat_per_im = box3d_quat_per_im.squeeze(-1)
                box3d_ctr_per_im = box3d_ctr_per_im.squeeze(-1)
                box3d_depth_per_im = box3d_depth_per_im.squeeze(-1)
                box3d_size_per_im = box3d_size_per_im.squeeze(-1)
                box3d_conf_per_im = box3d_conf_per_im.squeeze(-1)
            else:
                I = class_inds_per_im[..., None, None]
                box3d_quat_per_im = torch.gather(box3d_quat_per_im, dim=2, index=I.repeat(1, 4, 1)).squeeze(-1)
                box3d_ctr_per_im = torch.gather(box3d_ctr_per_im, dim=2, index=I.repeat(1, 2, 1)).squeeze(-1)
                box3d_depth_per_im = torch.gather(box3d_depth_per_im, dim=1, index=I.squeeze(-1)).squeeze(-1)
                box3d_size_per_im = torch.gather(box3d_size_per_im, dim=2, index=I.repeat(1, 3, 1)).squeeze(-1)
                box3d_conf_per_im = torch.gather(box3d_conf_per_im, dim=1, index=I.squeeze(-1)).squeeze(-1)

            if topk_indices is not None:
                box3d_quat_per_im = box3d_quat_per_im[topk_indices]
                box3d_ctr_per_im = box3d_ctr_per_im[topk_indices]
                box3d_depth_per_im = box3d_depth_per_im[topk_indices]
                box3d_size_per_im = box3d_size_per_im[topk_indices]
                box3d_conf_per_im = box3d_conf_per_im[topk_indices]

            # scores_per_im = pred_instances[i].scores.square()
            # NOTE: Before refactoring, the squared score was used. Is raw 2D score better?
            scores_per_im = pred_instances[i].scores
            scores_3d_per_im = scores_per_im * box3d_conf_per_im

            canon_box_sizes = box3d_quat.new_tensor(self.canon_box_sizes)[pred_instances[i].pred_classes]
            inv_K = inv_intrinsics[i][None, ...].expand(len(box3d_quat_per_im), 3, 3)
            locations = pred_instances[i].locations
            pred_boxes3d = predictions_to_boxes3d(
                box3d_quat_per_im,
                box3d_ctr_per_im,
                box3d_depth_per_im,
                box3d_size_per_im,
                locations,
                inv_K,
                canon_box_sizes,
                self.min_depth,
                self.max_depth,
                scale_depth_by_focal_lengths_factor=self.scale_depth_by_focal_lengths_factor,
                scale_depth_by_focal_lengths=self.scale_depth_by_focal_lengths,
                quat_is_allocentric=self.predict_allocentric_rot,
                depth_is_distance=self.predict_distance
            )

            # In-place modification: add fields to instances.
            pred_instances[i].pred_boxes3d = pred_boxes3d
            pred_instances[i].scores_3d = scores_3d_per_im