nuscenes.py 13.9 KB
Newer Older
lishj6's avatar
init  
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright 2021 Toyota Research Institute.  All rights reserved.
#import functools
from collections import OrderedDict

import numpy as np
import seaborn as sns
from torch.utils.data import Dataset
from tqdm import tqdm

#from detectron2.data import MetadataCatalog
from detectron2.structures.boxes import BoxMode
from nuscenes.eval.detection.utils import category_to_detection_name
from nuscenes.nuscenes import NuScenes
from nuscenes.utils.splits import create_splits_scenes

#from tridet.data import collect_dataset_dicts
from projects.mmdet3d_plugin.dd3d.structures.boxes3d import GenericBoxes3D
from projects.mmdet3d_plugin.dd3d.structures.pose import Pose
from projects.mmdet3d_plugin.dd3d.utils.geometry import project_points3d
from projects.mmdet3d_plugin.dd3d.utils.visualization import float_to_uint8_color

#  https://github.com/nutonomy/nuscenes-devkit/blob/9b209638ef3dee6d0cdc5ac700c493747f5b35fe/python-sdk/nuscenes/utils/splits.py#L189
#     - train/val/test: The standard splits of the nuScenes dataset (700/150/150 scenes).
#     - mini_train/mini_val: Train and val splits of the mini subset used for visualization and debugging (8/2 scenes).
#     - train_detect/train_track: Two halves of the train split used for separating the training sets of detector and
#         tracker if required
DATASET_NAME_TO_VERSION = {
    "nusc_train": "v1.0-trainval",
    "nusc_val": "v1.0-trainval",
    "nusc_val-subsample-8": "v1.0-trainval",
    "nusc_trainval": "v1.0-trainval",
    "nusc_test": "v1.0-test",
    "nusc_mini_train": "v1.0-mini",
    "nusc_mini_val": "v1.0-mini",
}

CAMERA_NAMES = ('CAM_FRONT_LEFT', 'CAM_FRONT', 'CAM_FRONT_RIGHT', 'CAM_BACK_LEFT', 'CAM_BACK', 'CAM_BACK_RIGHT')

ATTRIBUTE_IDS = {
    'vehicle.moving': 0,
    'vehicle.parked': 1,
    'vehicle.stopped': 2,
    'pedestrian.moving': 0,
    'pedestrian.standing': 1,
    'pedestrian.sitting_lying_down': 2,
    'cycle.with_rider': 0,
    'cycle.without_rider': 1,
}

CATEGORY_IDS = OrderedDict({
    'barrier': 0,
    'bicycle': 1,
    'bus': 2,
    'car': 3,
    'construction_vehicle': 4,
    'motorcycle': 5,
    'pedestrian': 6,
    'traffic_cone': 7,
    'trailer': 8,
    'truck': 9,
})

COLORS = [float_to_uint8_color(clr) for clr in sns.color_palette("bright", n_colors=10)]
COLORMAP = OrderedDict({
    'barrier': COLORS[8],  # yellow
    'bicycle': COLORS[0],  # blue
    'bus': COLORS[6],  # pink
    'car': COLORS[2],  # green
    'construction_vehicle': COLORS[7],  # gray
    'motorcycle': COLORS[4],  # purple
    'pedestrian': COLORS[1],  # orange
    'traffic_cone': COLORS[3],  # red
    'trailer': COLORS[9],  # skyblue
    'truck': COLORS[5],  # brown
})

MAX_NUM_ATTRIBUTES = 3


def _compute_iou(box1, box2):
    """
    Parameters
    ----------
    box1, box2:
        (x1, y1, x2, y2)
    """
    xx1 = max(box1[0], box2[0])
    yy1 = max(box1[1], box2[1])
    xx2 = min(box1[2], box2[2])
    yy2 = min(box1[3], box2[3])
    if xx1 >= xx2 or yy1 >= yy2:
        return 0.
    inter = (xx2 - xx1) * (yy2 - yy1)
    a1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    a2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
    return inter / (a1 + a2 - inter)


class NuscenesDataset(Dataset):
    def __init__(self, name, data_root, datum_names=CAMERA_NAMES, min_num_lidar_points=3, min_box_visibility=0.2, **unused):
        self.data_root = data_root
        assert name in DATASET_NAME_TO_VERSION
        version = DATASET_NAME_TO_VERSION[name]
        self.nusc = NuScenes(version=version, dataroot=data_root, verbose=True)

        self.datum_names = datum_names
        self.min_num_lidar_points = min_num_lidar_points
        self.min_box_visibility = min_box_visibility

        self.dataset_item_info = self._build_dataset_item_info(name)

        # Index instance tokens to their IDs
        self._instance_token_to_id = self._index_instance_tokens()

        # Construct the mapping from datum_token (image id) to index
        print("Generating the mapping from image id to idx...")
        self.datumtoken2idx = {}
        for idx, (datum_token, _, _, _, _) in enumerate(self.dataset_item_info):
            self.datumtoken2idx[datum_token] = idx
        print("Done.")

    def _build_dataset_item_info(self, name):
        scenes_in_split = self._get_split_scenes(name)

        dataset_items = []
        for _, scene_token in tqdm(scenes_in_split):
            scene = self.nusc.get('scene', scene_token)
            sample_token = scene['first_sample_token']
            for sample_idx in range(scene['nbr_samples']):
                if name.endswith('subsample-8') and sample_idx % 8 > 0:
                    # Sample-level subsampling.
                    continue

                sample = self.nusc.get('sample', sample_token)
                for datum_name, datum_token in sample['data'].items():
                    if datum_name not in self.datum_names:
                        continue
                    dataset_items.append((datum_token, sample_token, scene['name'], sample_idx, datum_name))
                sample_token = sample['next']
        return dataset_items

    def _get_split_scenes(self, name):
        scenes_in_splits = create_splits_scenes()
        if name == "nusc_trainval":
            scenes = scenes_in_splits["train"] + scenes_in_splits["val"]
        elif name == "nusc_val-subsample-8":
            scenes = scenes_in_splits["val"]
        else:
            assert name.startswith('nusc_'), f"Invalid dataset name: {name}"
            split = name[5:]
            assert split in scenes_in_splits, f"Invalid dataset: {split}"
            scenes = scenes_in_splits[split]

        # Mapping from scene name to token.
        name_to_token = {scene['name']: scene['token'] for scene in self.nusc.scene}
        return [(name, name_to_token[name]) for name in scenes]

    def __len__(self):
        return len(self.dataset_item_info)

    def _build_id(self, scene_name, sample_idx, datum_name):
        sample_id = f"{scene_name}_{sample_idx:03d}"
        image_id = f"{sample_id}_{datum_name}"
        return image_id, sample_id

    def _index_instance_tokens(self):
        """Index instance tokens for uniquely identifying instances across samples"""
        instance_token_to_id = {}
        for record in self.nusc.sample_annotation:
            instance_token = record['instance_token']
            if instance_token not in instance_token_to_id:
                next_instance_id = len(instance_token_to_id)
                instance_token_to_id[instance_token] = next_instance_id
        return instance_token_to_id

    def get_instance_annotations(self, annotation_list, K, image_shape, pose_WS):
        annotations = []
        for _ann in annotation_list:
            ann = self.nusc.get('sample_annotation', _ann.token)
            if ann['num_lidar_pts'] + ann['num_radar_pts'] < self.min_num_lidar_points:
                continue
            annotation = OrderedDict()

            # --------
            # Category
            # --------
            category = category_to_detection_name(ann['category_name'])
            if category is None:
                continue
            annotation['category_id'] = CATEGORY_IDS[category]

            # ------
            # 3D box
            # ------
            # NOTE: ann['rotation'], ann['translation'] is in global frame.
            pose_SO = Pose(wxyz=_ann.orientation, tvec=_ann.center)  # pose in sensor frame
            # DEBUG:
            # pose_WO_1 = Pose(np.array(ann['rotation']), np.array(ann['translation']))
            # pose_WO_2 = pose_WS * pose_SO
            # assert np.allclose(pose_WO_1.matrix, pose_WO_2.matrix)
            bbox3d = GenericBoxes3D(_ann.orientation, _ann.center, _ann.wlh)
            annotation['bbox3d'] = bbox3d.vectorize().tolist()[0]

            # --------------------------------------
            # 2D box -- project 8 corners of 3D bbox
            # --------------------------------------
            corners = project_points3d(bbox3d.corners.cpu().numpy().squeeze(0), K)
            l, t = corners[:, 0].min(), corners[:, 1].min()
            r, b = corners[:, 0].max(), corners[:, 1].max()

            x1 = max(0, l)
            y1 = max(0, t)
            x2 = min(image_shape[1], r)
            y2 = min(image_shape[0], b)

            iou = _compute_iou([l, t, r, b], [x1, y1, x2, y2])
            if iou < self.min_box_visibility:
                continue

            annotation['bbox'] = [x1, y1, x2, y2]
            annotation['bbox_mode'] = BoxMode.XYXY_ABS

            # --------
            # Track ID
            # --------
            annotation['track_id'] = self._instance_token_to_id[ann['instance_token']]

            # ---------
            # Attribute
            # ---------
            attr_tokens = ann['attribute_tokens']
            assert len(attr_tokens) < 2  # NOTE: Allow only single attrubute.
            attribute_id = MAX_NUM_ATTRIBUTES  # By default, MAX_NUM_ATTRIBUTES -- this is to be ignored in loss compute.
            if attr_tokens:
                attribute = self.nusc.get('attribute', attr_tokens[0])['name']
                attribute_id = ATTRIBUTE_IDS[attribute]
            annotation['attribute_id'] = attribute_id

            # -----
            # Speed
            # -----
            vel_global = self.nusc.box_velocity(ann['token'])
            speed = np.linalg.norm(vel_global)  # NOTE: This can be NaN.
            # DEBUG:
            # speed * Quaternion(ann['rotation']).rotation_matrix.T[0] ~= vel_global
            annotation['speed'] = speed

            annotations.append(annotation)

        return annotations

    def _get_ego_velocity(self, current, max_time_diff=1.5):
        """Velocity of ego-vehicle in m/s.
        """
        has_prev = current['prev'] != ''
        has_next = current['next'] != ''

        # Cannot estimate velocity for a single annotation.
        if not has_prev and not has_next:
            return np.array([np.nan, np.nan, np.nan])

        if has_prev:
            first = self.nusc.get('sample_data', current['prev'])
        else:
            first = current

        if has_next:
            last = self.nusc.get('sample_data', current['next'])
        else:
            last = current

        pos_first = self.nusc.get('ego_pose', first['ego_pose_token'])['translation']
        pos_last = self.nusc.get('ego_pose', last['ego_pose_token'])['translation']
        pos_diff = np.float32(pos_last) - np.float32(pos_first)

        time_last = 1e-6 * last['timestamp']
        time_first = 1e-6 * first['timestamp']
        time_diff = time_last - time_first

        if has_next and has_prev:
            # If doing centered difference, allow for up to double the max_time_diff.
            max_time_diff *= 2

        if time_diff > max_time_diff:
            # If time_diff is too big, don't return an estimate.
            return np.array([np.nan, np.nan, np.nan])
        else:
            return pos_diff / time_diff

    def __getitem__(self, idx):
        datum_token, sample_token, scene_name, sample_idx, datum_name = self.dataset_item_info[idx]
        datum = self.nusc.get('sample_data', datum_token)
        assert datum['is_key_frame']

        filename, _annotations, K = self.nusc.get_sample_data(datum_token)
        image_id, sample_id = self._build_id(scene_name, sample_idx, datum_name)
        height, width = datum['height'], datum['width']
        d2_dict = OrderedDict(
            file_name=filename,
            height=height,
            width=width,
            image_id=image_id,
            sample_id=sample_id,
            sample_token=sample_token
        )

        # Intrinsics
        d2_dict['intrinsics'] = list(K.flatten())

        # Get pose of the sensor (S) from vehicle (V) frame
        _pose_VS = self.nusc.get('calibrated_sensor', datum['calibrated_sensor_token'])
        pose_VS = Pose(wxyz=np.float64(_pose_VS['rotation']), tvec=np.float64(_pose_VS['translation']))

        # Get ego-pose of the vehicle (V) from global/world (W) frame
        _pose_WV = self.nusc.get('ego_pose', datum['ego_pose_token'])
        pose_WV = Pose(wxyz=np.float64(_pose_WV['rotation']), tvec=np.float64(_pose_WV['translation']))
        pose_WS = pose_WV * pose_VS

        d2_dict['pose'] = {'wxyz': list(pose_WS.quat.elements), 'tvec': list(pose_WS.tvec)}
        d2_dict['extrinsics'] = {'wxyz': list(pose_VS.quat.elements), 'tvec': list(pose_VS.tvec)}

        d2_dict['ego_speed'] = np.linalg.norm(self._get_ego_velocity(datum))

        d2_dict['annotations'] = self.get_instance_annotations(_annotations, K, (height, width), pose_WS)

        return d2_dict

    def getitem_by_datumtoken(self, datum_token):
        # idx = self.datumtoken2idx[datum_token]
        # ret = self.__getitem__(idx)

        datum = self.nusc.get('sample_data', datum_token)
        sample_token = datum['sample_token']
        filename, _annotations, K = self.nusc.get_sample_data(datum_token)
        height, width = datum['height'], datum['width']
        d2_dict = OrderedDict(
            file_name=filename,
            height=height,
            width=width,
            image_id=0,
            sample_id=0,
            sample_token=sample_token
        )
        # Intrinsics
        d2_dict['intrinsics'] = list(K.flatten())
        # Get pose of the sensor (S) from vehicle (V) frame
        _pose_VS = self.nusc.get('calibrated_sensor', datum['calibrated_sensor_token'])
        pose_VS = Pose(wxyz=np.float64(_pose_VS['rotation']), tvec=np.float64(_pose_VS['translation'])) 
        # Get ego-pose of the vehicle (V) from global/world (W) frame
        _pose_WV = self.nusc.get('ego_pose', datum['ego_pose_token'])
        pose_WV = Pose(wxyz=np.float64(_pose_WV['rotation']), tvec=np.float64(_pose_WV['translation']))
        pose_WS = pose_WV * pose_VS

        d2_dict['pose'] = {'wxyz': list(pose_WS.quat.elements), 'tvec': list(pose_WS.tvec)}
        d2_dict['extrinsics'] = {'wxyz': list(pose_VS.quat.elements), 'tvec': list(pose_VS.tvec)}

        d2_dict['ego_speed'] = np.linalg.norm(self._get_ego_velocity(datum))

        d2_dict['annotations'] = self.get_instance_annotations(_annotations, K, (height, width), pose_WS)
        return d2_dict