nuscenes_dataset_v2.py 12.3 KB
Newer Older
lishj6's avatar
init  
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import copy
from mmdet3d.datasets import NuScenesDataset
import mmcv
from os import path as osp
from mmdet.datasets import DATASETS
import torch
import numpy as np
from nuscenes.eval.common.utils import quaternion_yaw, Quaternion
from .nuscnes_eval import NuScenesEval_custom
from mmcv.parallel import DataContainer as DC
from collections import defaultdict, OrderedDict
from projects.mmdet3d_plugin.dd3d.datasets.nuscenes import NuscenesDataset as DD3DNuscenesDataset


@DATASETS.register_module()
class CustomNuScenesDatasetV2(NuScenesDataset):
    def __init__(self, frames=(),mono_cfg=None, overlap_test=False,*args, **kwargs):
        super().__init__(*args, **kwargs)
        self.frames = frames
        self.queue_length = len(frames)
        self.overlap_test = overlap_test
        self.mono_cfg = mono_cfg
        if not self.test_mode and mono_cfg is not None:
            self.mono_dataset = DD3DNuscenesDataset(**mono_cfg)

    def prepare_test_data(self, index):
        """Prepare data for testing.

        Args:
            index (int): Index for accessing the target data.

        Returns:
            dict: Testing data dict of the corresponding index.
        """
        data_queue = OrderedDict()
        input_dict = self.get_data_info(index)
        cur_scene_token = input_dict['scene_token']
        self.pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        data_queue[0] = example
        
        for frame_idx in self.frames:
            chosen_idx = index + frame_idx
            if frame_idx ==0 or chosen_idx <0 or chosen_idx >= len(self.data_infos):
                continue
            info = self.data_infos[chosen_idx]
            input_dict = self.prepare_input_dict(info)
            if input_dict['scene_token'] == cur_scene_token:
                self.pre_pipeline(input_dict)
                example = self.pipeline(input_dict)
                data_queue[frame_idx] = example

        data_queue = OrderedDict(sorted(data_queue.items()))
        ret = defaultdict(list)
        for i in range(len(data_queue[0]['img'])):
            single_aug_data_queue = {}
            for t in data_queue.keys():
                single_example = {}
                for key ,value in data_queue[t].items():
                    single_example[key] = value[i]
                single_aug_data_queue[t] = single_example
            single_aug_data_queue = OrderedDict(sorted(single_aug_data_queue.items()))
            single_aug_sample = self.union2one(single_aug_data_queue)

            for key, value in single_aug_sample.items():
                ret[key].append(value)
        return ret

    def prepare_train_data(self, index):
        """
        Training data preparation.
        Args:
            index (int): Index for accessing the target data.
        Returns:
            dict: Training data dict of the corresponding index.
        """
        data_queue = OrderedDict()
        input_dict = self.get_data_info(index)
        if input_dict is None:
            return None 
        cur_scene_token = input_dict['scene_token']
        # cur_frame_idx = input_dict['frame_idx']
        ann_info = copy.deepcopy(input_dict['ann_info'])
        self.pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        if self.filter_empty_gt and \
                (example is None or ~(example['gt_labels_3d']._data != -1).any()):
            return None
        data_queue[0] = example
        aug_param = copy.deepcopy(example['aug_param']) if 'aug_param' in example else {}
        
        # frame_idx_to_idx = self.scene_to_frame_idx_to_idx[cur_scene_token]
        for frame_idx in self.frames:
            chosen_idx = index + frame_idx
            if frame_idx ==0 or chosen_idx <0 or chosen_idx >= len(self.data_infos):
                continue
            info = self.data_infos[chosen_idx]
            input_dict = self.prepare_input_dict(info)
            if input_dict['scene_token'] == cur_scene_token:
                input_dict['ann_info'] = copy.deepcopy(ann_info) # only for pipeline, should never be used 
                self.pre_pipeline(input_dict)
                input_dict['aug_param'] = copy.deepcopy(aug_param)
                example = self.pipeline(input_dict)
                data_queue[frame_idx] = example

        data_queue = OrderedDict(sorted(data_queue.items()))
        return self.union2one(data_queue)

    def union2one(self, queue: dict):
        """
        convert sample queue into one single sample.
        """
        imgs_list = [each['img'].data for each in queue.values()]
        lidar2ego = np.eye(4, dtype=np.float32)
        lidar2ego[:3, :3] = Quaternion(queue[0]['lidar2ego_rotation']).rotation_matrix
        lidar2ego[:3, 3] = queue[0]['lidar2ego_translation']

        egocurr2global = np.eye(4, dtype=np.float32)
        egocurr2global[:3,:3] = Quaternion(queue[0]['ego2global_rotation']).rotation_matrix
        egocurr2global[:3,3] = queue[0]['ego2global_translation']
        metas_map = {}
        for i, each in queue.items():
            metas_map[i] = each['img_metas'].data
            metas_map[i]['timestamp'] = each['timestamp']
            if 'aug_param' in each:
                metas_map[i]['aug_param'] = each['aug_param']
            if i == 0:
                metas_map[i]['lidaradj2lidarcurr'] = None
            else:
                egoadj2global = np.eye(4, dtype=np.float32)
                egoadj2global[:3,:3] = Quaternion(each['ego2global_rotation']).rotation_matrix
                egoadj2global[:3,3] = each['ego2global_translation']

                lidaradj2lidarcurr = np.linalg.inv(lidar2ego) @ np.linalg.inv(egocurr2global) @ egoadj2global @ lidar2ego
                metas_map[i]['lidaradj2lidarcurr'] = lidaradj2lidarcurr
                for i_cam in range(len(metas_map[i]['lidar2img'])):
                    metas_map[i]['lidar2img'][i_cam] = metas_map[i]['lidar2img'][i_cam] @ np.linalg.inv(lidaradj2lidarcurr)
        queue[0]['img'] = DC(torch.stack(imgs_list),
                              cpu_only=False, stack=True)
        queue[0]['img_metas'] = DC(metas_map, cpu_only=True)
        queue = queue[0]
        return queue

    def prepare_input_dict(self, info):
        # standard protocal modified from SECOND.Pytorch
        input_dict = dict(
            sample_idx=info['token'],
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            ego2global_translation=info['ego2global_translation'],
            ego2global_rotation=info['ego2global_rotation'],
            lidar2ego_translation=info['lidar2ego_translation'],
            lidar2ego_rotation=info['lidar2ego_rotation'],
            prev=info['prev'],
            next=info['next'],
            scene_token=info['scene_token'],
            frame_idx=info['frame_idx'],
            timestamp=info['timestamp'] / 1e6,
        )

        if self.modality['use_camera']:
            image_paths = []
            lidar2img_rts = []
            lidar2cam_rts = []
            cam_intrinsics = []
            for cam_type, cam_info in info['cams'].items():
                image_paths.append(cam_info['data_path'])
                # obtain lidar to image transformation matrix
                lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
                lidar2cam_t = cam_info[
                    'sensor2lidar_translation'] @ lidar2cam_r.T
                lidar2cam_rt = np.eye(4)
                lidar2cam_rt[:3, :3] = lidar2cam_r.T
                lidar2cam_rt[3, :3] = -lidar2cam_t
                intrinsic = cam_info['cam_intrinsic']
                viewpad = np.eye(4)
                viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
                lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                lidar2img_rts.append(lidar2img_rt)

                cam_intrinsics.append(viewpad)
                lidar2cam_rts.append(lidar2cam_rt.T)

            input_dict.update(
                dict(
                    img_filename=image_paths,
                    lidar2img=lidar2img_rts,
                    cam2img=cam_intrinsics,
                    lidar2cam=lidar2cam_rts,
                ))

        return input_dict

    def filter_crowd_annotations(self, data_dict):
        for ann in data_dict["annotations"]:
            if ann.get("iscrowd", 0) == 0:
                return True
        return False

    def get_data_info(self, index):
        info = self.data_infos[index]
        input_dict = self.prepare_input_dict(info)
        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos

        if not self.test_mode and self.mono_cfg is not None:
            if input_dict is None:
                return None
            info = self.data_infos[index]
            img_ids = []
            for cam_type, cam_info in info['cams'].items():
                img_ids.append(cam_info['sample_data_token'])

            mono_input_dict = []; mono_ann_index = []
            for i, img_id in enumerate(img_ids):
                tmp_dict = self.mono_dataset.getitem_by_datumtoken(img_id)
                if tmp_dict is not None:
                    if self.filter_crowd_annotations(tmp_dict):
                        mono_input_dict.append(tmp_dict)
                        mono_ann_index.append(i)

            # filter empth annotation
            if len(mono_ann_index) == 0:
                return None

            mono_ann_index = DC(mono_ann_index, cpu_only=True)
            input_dict['mono_input_dict'] = mono_input_dict
            input_dict['mono_ann_idx'] = mono_ann_index
        return input_dict

    def __getitem__(self, idx):
        """Get item from infos according to the given index.
        Returns:
            dict: Data dictionary of the corresponding index.
        """
        if self.test_mode:
            return self.prepare_test_data(idx)
        while True:

            data = self.prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
        """Evaluation for a single model in nuScenes protocol.

        Args:
            result_path (str): Path of the result file.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            metric (str): Metric name used for evaluation. Default: 'bbox'.
            result_name (str): Result name in the metric prefix.
                Default: 'pts_bbox'.

        Returns:
            dict: Dictionary of evaluation details.
        """
        from nuscenes import NuScenes
        self.nusc = NuScenes(version=self.version, dataroot=self.data_root,
                             verbose=True)

        output_dir = osp.join(*osp.split(result_path)[:-1])

        eval_set_map = {
            'v1.0-mini': 'mini_val',
            'v1.0-trainval': 'val',
        }
        self.nusc_eval = NuScenesEval_custom(
            self.nusc,
            config=self.eval_detection_configs,
            result_path=result_path,
            eval_set=eval_set_map[self.version],
            output_dir=output_dir,
            verbose=True,
            overlap_test=self.overlap_test,
            data_infos=self.data_infos
        )
        self.nusc_eval.main(plot_examples=0, render_curves=False)
        # record metrics
        metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
        detail = dict()
        metric_prefix = f'{result_name}_NuScenes'
        for name in self.CLASSES:
            for k, v in metrics['label_aps'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['label_tp_errors'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['tp_errors'].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}'.format(metric_prefix,
                                      self.ErrNameMapping[k])] = val
        detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score']
        detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap']
        return detail