hub.py 20 KB
Newer Older
LiangLiu's avatar
LiangLiu committed
1
2
3
4
5
import asyncio
import ctypes
import gc
import json
import os
6
import sys
LiangLiu's avatar
LiangLiu committed
7
8
9
10
11
12
13
14
import tempfile
import threading
import traceback

import torch
import torch.distributed as dist
from loguru import logger

15
import lightx2v
LiangLiu's avatar
LiangLiu committed
16
17
from lightx2v.deploy.common.utils import class_try_catch_async
from lightx2v.infer import init_runner  # noqa
LiangLiu's avatar
LiangLiu committed
18
from lightx2v.utils.input_info import set_input_info
19
from lightx2v.utils.profiler import *
LiangLiu's avatar
LiangLiu committed
20
21
22
23
24
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.set_config import set_config, set_parallel_config
from lightx2v.utils.utils import seed_all


25
26
27
28
29
30
def init_tools_preprocess():
    preprocess_path = os.path.abspath(os.path.join(lightx2v.__path__[0], "..", "tools", "preprocess"))
    assert os.path.exists(preprocess_path), f"lightx2v tools preprocess path not found: {preprocess_path}"
    sys.path.append(preprocess_path)


LiangLiu's avatar
LiangLiu committed
31
class BaseWorker:
32
    @ProfilingContext4DebugL1("Init Worker Worker Cost:")
LiangLiu's avatar
LiangLiu committed
33
34
35
    def __init__(self, args):
        config = set_config(args)
        logger.info(f"config:\n{json.dumps(config, ensure_ascii=False, indent=4)}")
LiangLiu's avatar
LiangLiu committed
36
        seed_all(args.seed)
LiangLiu's avatar
LiangLiu committed
37
        self.rank = 0
LiangLiu's avatar
LiangLiu committed
38
        self.world_size = 1
LiangLiu's avatar
LiangLiu committed
39
        if config["parallel"]:
LiangLiu's avatar
LiangLiu committed
40
            self.rank = dist.get_rank()
LiangLiu's avatar
LiangLiu committed
41
            self.world_size = dist.get_world_size()
LiangLiu's avatar
LiangLiu committed
42
            set_parallel_config(config)
LiangLiu's avatar
LiangLiu committed
43
44
        # same as va_recorder rank and worker main ping rank
        self.out_video_rank = self.world_size - 1
LiangLiu's avatar
LiangLiu committed
45
        torch.set_grad_enabled(False)
LiangLiu's avatar
LiangLiu committed
46
47
        self.runner = RUNNER_REGISTER[config["model_cls"]](config)
        self.input_info = set_input_info(args)
LiangLiu's avatar
LiangLiu committed
48

LiangLiu's avatar
LiangLiu committed
49
    def update_input_info(self, kwargs):
LiangLiu's avatar
LiangLiu committed
50
        for k, v in kwargs.items():
LiangLiu's avatar
LiangLiu committed
51
            setattr(self.input_info, k, v)
LiangLiu's avatar
LiangLiu committed
52
53

    def set_inputs(self, params):
LiangLiu's avatar
LiangLiu committed
54
55
56
57
58
59
        self.input_info.prompt = params["prompt"]
        self.input_info.negative_prompt = params.get("negative_prompt", "")
        self.input_info.image_path = params.get("image_path", "")
        self.input_info.save_result_path = params.get("save_result_path", "")
        self.input_info.seed = params.get("seed", self.input_info.seed)
        self.input_info.audio_path = params.get("audio_path", "")
60
61
62
        for k, v in params.get("processed_video_paths", {}).items():
            logger.info(f"set {k} to {v}")
            setattr(self.input_info, k, v)
LiangLiu's avatar
LiangLiu committed
63
64
65
66
67
68

    async def prepare_input_image(self, params, inputs, tmp_dir, data_manager):
        input_image_path = inputs.get("input_image", "")
        tmp_image_path = os.path.join(tmp_dir, input_image_path)

        # prepare tmp image
LiangLiu's avatar
LiangLiu committed
69
        if "image_path" in self.input_info.__dataclass_fields__:
LiangLiu's avatar
LiangLiu committed
70
71
72
            img_data = await data_manager.load_bytes(input_image_path)
            with open(tmp_image_path, "wb") as fout:
                fout.write(img_data)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            params["image_path"] = tmp_image_path

    async def prepare_input_video(self, params, inputs, tmp_dir, data_manager):
        if not self.is_animate_model():
            return
        init_tools_preprocess()
        from preprocess_data import get_preprocess_parser, process_input_video

        result_paths = {}
        if self.rank == 0:
            tmp_image_path = params.get("image_path", "")
            assert os.path.exists(tmp_image_path), f"input_image should be save by prepare_input_image but not valid: {tmp_image_path}"

            # prepare tmp input video
            input_video_path = inputs.get("input_video", "")
            tmp_video_path = os.path.join(tmp_dir, input_video_path)
            processed_video_path = os.path.join(tmp_dir, "processe_results")
            video_data = await data_manager.load_bytes(input_video_path)
            with open(tmp_video_path, "wb") as fout:
                fout.write(video_data)

            # prepare preprocess args
            pre_args = get_preprocess_parser().parse_args([])
            pre_args.ckpt_path = self.runner.config["model_path"] + "/process_checkpoint"
            pre_args.video_path = tmp_video_path
            pre_args.refer_path = tmp_image_path
            pre_args.save_path = processed_video_path
            pre_args.replace_flag = self.runner.config.get("replace_flag", False)
            pre_config = self.runner.config.get("preprocess_config", {})
            pre_keys = ["resolution_area", "fps", "replace_flag", "retarget_flag", "use_flux", "iterations", "k", "w_len", "h_len"]
            for k in pre_keys:
                if k in pre_config:
                    setattr(pre_args, k, pre_config[k])

            process_input_video(pre_args)
            result_paths = {
                "src_pose_path": os.path.join(processed_video_path, "src_pose.mp4"),
                "src_face_path": os.path.join(processed_video_path, "src_face.mp4"),
                "src_ref_images": os.path.join(processed_video_path, "src_ref.png"),
            }
            if pre_args.replace_flag:
                result_paths["src_bg_path"] = os.path.join(processed_video_path, "src_bg.mp4")
                result_paths["src_mask_path"] = os.path.join(processed_video_path, "src_mask.mp4")
LiangLiu's avatar
LiangLiu committed
116

117
118
119
120
121
        # for dist, broadcast the video processed result to all ranks
        result_paths = await self.broadcast_data(result_paths, 0)
        for p in result_paths.values():
            assert os.path.exists(p), f"Input video processed result not found: {p}!"
        params["processed_video_paths"] = result_paths
LiangLiu's avatar
LiangLiu committed
122
123
124
125
126
127
128
129
130
131
132

    async def prepare_input_audio(self, params, inputs, tmp_dir, data_manager):
        input_audio_path = inputs.get("input_audio", "")
        tmp_audio_path = os.path.join(tmp_dir, input_audio_path)

        # for stream audio input, value is dict
        stream_audio_path = params.get("input_audio", None)
        if stream_audio_path is not None:
            tmp_audio_path = stream_audio_path

        if input_audio_path and self.is_audio_model() and isinstance(tmp_audio_path, str):
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            extra_audio_inputs = params.get("extra_inputs", {}).get("input_audio", [])

            # for multi-person audio directory input
            if len(extra_audio_inputs) > 0:
                os.makedirs(tmp_audio_path, exist_ok=True)
                for inp in extra_audio_inputs:
                    tmp_path = os.path.join(tmp_dir, inputs[inp])
                    inp_data = await data_manager.load_bytes(inputs[inp])
                    with open(tmp_path, "wb") as fout:
                        fout.write(inp_data)
            else:
                audio_data = await data_manager.load_bytes(input_audio_path)
                with open(tmp_audio_path, "wb") as fout:
                    fout.write(audio_data)
LiangLiu's avatar
LiangLiu committed
147
148
149
150
151
152
153
154
155
156
157
158
159

        params["audio_path"] = tmp_audio_path

    def prepare_output_video(self, params, outputs, tmp_dir, data_manager):
        output_video_path = outputs.get("output_video", "")
        tmp_video_path = os.path.join(tmp_dir, output_video_path)
        if data_manager.name == "local":
            tmp_video_path = os.path.join(data_manager.local_dir, output_video_path)
        # for stream video output, value is dict
        stream_video_path = params.get("output_video", None)
        if stream_video_path is not None:
            tmp_video_path = stream_video_path

160
        params["save_result_path"] = tmp_video_path
LiangLiu's avatar
LiangLiu committed
161
162
163
164
165
166
167
168
        return tmp_video_path, output_video_path

    async def prepare_dit_inputs(self, inputs, data_manager):
        device = torch.device("cuda", self.rank)
        text_out = inputs["text_encoder_output"]
        text_encoder_output = await data_manager.load_object(text_out, device)
        image_encoder_output = None

LiangLiu's avatar
LiangLiu committed
169
        if "image_path" in self.input_info.__dataclass_fields__:
LiangLiu's avatar
LiangLiu committed
170
171
172
173
174
175
176
177
178
            clip_path = inputs["clip_encoder_output"]
            vae_path = inputs["vae_encoder_output"]
            clip_encoder_out = await data_manager.load_object(clip_path, device)
            vae_encoder_out = await data_manager.load_object(vae_path, device)
            image_encoder_output = {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encoder_out["vals"],
            }
            # apploy the config changes by vae encoder
LiangLiu's avatar
LiangLiu committed
179
            self.update_input_info(vae_encoder_out["kwargs"])
LiangLiu's avatar
LiangLiu committed
180
181
182
183
184
185
186
187
188
189
190
191
192

        self.runner.inputs = {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": image_encoder_output,
        }

        if self.is_audio_model():
            audio_segments, expected_frames = self.runner.read_audio_input()
            self.runner.inputs["audio_segments"] = audio_segments
            self.runner.inputs["expected_frames"] = expected_frames

    async def save_output_video(self, tmp_video_path, output_video_path, data_manager):
        # save output video
LiangLiu's avatar
LiangLiu committed
193
        if data_manager.name != "local" and self.rank == self.out_video_rank and isinstance(tmp_video_path, str):
LiangLiu's avatar
LiangLiu committed
194
195
196
197
            video_data = open(tmp_video_path, "rb").read()
            await data_manager.save_bytes(video_data, output_video_path)

    def is_audio_model(self):
LiangLiu's avatar
LiangLiu committed
198
        return "audio" in self.runner.config["model_cls"] or "seko_talk" in self.runner.config["model_cls"]
LiangLiu's avatar
LiangLiu committed
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    def is_animate_model(self):
        return self.runner.config.get("task") == "animate"

    async def broadcast_data(self, data, src_rank=0):
        if self.world_size <= 1:
            return data

        if self.rank == src_rank:
            val = json.dumps(data, ensure_ascii=False).encode("utf-8")
            T = torch.frombuffer(bytearray(val), dtype=torch.uint8).to(device="cuda")
            S = torch.tensor([T.shape[0]], dtype=torch.int32).to(device="cuda")
            logger.info(f"hub rank {self.rank} send data: {data}")
        else:
            S = torch.zeros(1, dtype=torch.int32, device="cuda")

        dist.broadcast(S, src=src_rank)
        if self.rank != src_rank:
            T = torch.zeros(S.item(), dtype=torch.uint8, device="cuda")
        dist.broadcast(T, src=src_rank)

        if self.rank != src_rank:
            val = T.cpu().numpy().tobytes()
            data = json.loads(val.decode("utf-8"))
            logger.info(f"hub rank {self.rank} recv data: {data}")
        return data

LiangLiu's avatar
LiangLiu committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

class RunnerThread(threading.Thread):
    def __init__(self, loop, future, run_func, rank, *args, **kwargs):
        super().__init__(daemon=True)
        self.loop = loop
        self.future = future
        self.run_func = run_func
        self.args = args
        self.kwargs = kwargs
        self.rank = rank

    def run(self):
        try:
            # cuda device bind for each thread
            torch.cuda.set_device(self.rank)
            res = self.run_func(*self.args, **self.kwargs)
            status = True
        except:  # noqa
            logger.error(f"RunnerThread run failed: {traceback.format_exc()}")
            res = None
            status = False
        finally:

            async def set_future_result():
                self.future.set_result((status, res))

            # add the task of setting future to the loop queue
            asyncio.run_coroutine_threadsafe(set_future_result(), self.loop)

    def stop(self):
        if self.is_alive():
            try:
                logger.warning(f"Force terminate thread {self.ident} ...")
                ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(self.ident), ctypes.py_object(SystemExit))
            except Exception as e:
                logger.error(f"Force terminate thread failed: {e}")


def class_try_catch_async_with_thread(func):
    async def wrapper(self, *args, **kwargs):
        try:
            return await func(self, *args, **kwargs)
        except asyncio.CancelledError:
            logger.warning(f"RunnerThread inside {func.__name__} cancelled")
            if hasattr(self, "thread"):
                # self.thread.stop()
                self.runner.stop_signal = True
                self.thread.join()
            raise asyncio.CancelledError
        except Exception:
            logger.error(f"Error in {self.__class__.__name__}.{func.__name__}:")
            traceback.print_exc()
            return None

    return wrapper


class PipelineWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.init_modules()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
287
        self.run_func = self.runner.run_pipeline
LiangLiu's avatar
LiangLiu committed
288
289
290
291
292
293

    @class_try_catch_async_with_thread
    async def run(self, inputs, outputs, params, data_manager):
        with tempfile.TemporaryDirectory() as tmp_dir:
            await self.prepare_input_image(params, inputs, tmp_dir, data_manager)
            await self.prepare_input_audio(params, inputs, tmp_dir, data_manager)
294
            await self.prepare_input_video(params, inputs, tmp_dir, data_manager)
LiangLiu's avatar
LiangLiu committed
295
296
297
298
299
300
301
            tmp_video_path, output_video_path = self.prepare_output_video(params, outputs, tmp_dir, data_manager)
            logger.info(f"run params: {params}, {inputs}, {outputs}")

            self.set_inputs(params)
            self.runner.stop_signal = False

            future = asyncio.Future()
LiangLiu's avatar
LiangLiu committed
302
            self.thread = RunnerThread(asyncio.get_running_loop(), future, self.run_func, self.rank, input_info=self.input_info)
LiangLiu's avatar
LiangLiu committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
            self.thread.start()
            status, _ = await future
            if not status:
                return False
            await self.save_output_video(tmp_video_path, output_video_path, data_manager)
            return True


class TextEncoderWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.text_encoders = self.runner.load_text_encoder()

    @class_try_catch_async
    async def run(self, inputs, outputs, params, data_manager):
        logger.info(f"run params: {params}, {inputs}, {outputs}")
        input_image_path = inputs.get("input_image", "")

        self.set_inputs(params)
        prompt = self.runner.config["prompt"]
        img = None

        if self.runner.config["use_prompt_enhancer"]:
            prompt = self.runner.config["prompt_enhanced"]

LiangLiu's avatar
LiangLiu committed
328
        if self.runner.config["task"] == "i2v" and not self.is_audio_model():
LiangLiu's avatar
LiangLiu committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
            img = await data_manager.load_image(input_image_path)
            img = self.runner.read_image_input(img)
            if isinstance(img, tuple):
                img = img[0]

        out = self.runner.run_text_encoder(prompt, img)
        if self.rank == 0:
            await data_manager.save_object(out, outputs["text_encoder_output"])

        del out
        torch.cuda.empty_cache()
        gc.collect()
        return True


class ImageEncoderWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.image_encoder = self.runner.load_image_encoder()

    @class_try_catch_async
    async def run(self, inputs, outputs, params, data_manager):
        logger.info(f"run params: {params}, {inputs}, {outputs}")
        self.set_inputs(params)

        img = await data_manager.load_image(inputs["input_image"])
        img = self.runner.read_image_input(img)
        if isinstance(img, tuple):
            img = img[0]
        out = self.runner.run_image_encoder(img)
        if self.rank == 0:
            await data_manager.save_object(out, outputs["clip_encoder_output"])

        del out
        torch.cuda.empty_cache()
        gc.collect()
        return True


class VaeEncoderWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.vae_encoder, vae_decoder = self.runner.load_vae()
        del vae_decoder

    @class_try_catch_async
    async def run(self, inputs, outputs, params, data_manager):
        logger.info(f"run params: {params}, {inputs}, {outputs}")
        self.set_inputs(params)
        img = await data_manager.load_image(inputs["input_image"])
        # could change config.lat_h, lat_w, tgt_h, tgt_w
        img = self.runner.read_image_input(img)
        if isinstance(img, tuple):
            img = img[1] if self.runner.vae_encoder_need_img_original else img[0]
        # run vae encoder changed the config, we use kwargs pass changes
        vals = self.runner.run_vae_encoder(img)
        out = {"vals": vals, "kwargs": {}}

LiangLiu's avatar
LiangLiu committed
387
388
389
        for key in ["original_shape", "resized_shape", "latent_shape", "target_shape"]:
            if hasattr(self.input_info, key):
                out["kwargs"][key] = getattr(self.input_info, key)
LiangLiu's avatar
LiangLiu committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

        if self.rank == 0:
            await data_manager.save_object(out, outputs["vae_encoder_output"])

        del out, img, vals
        torch.cuda.empty_cache()
        gc.collect()
        return True


class DiTWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.model = self.runner.load_transformer()

    @class_try_catch_async_with_thread
    async def run(self, inputs, outputs, params, data_manager):
        logger.info(f"run params: {params}, {inputs}, {outputs}")
        self.set_inputs(params)

        await self.prepare_dit_inputs(inputs, data_manager)
        self.runner.stop_signal = False
        future = asyncio.Future()
        self.thread = RunnerThread(asyncio.get_running_loop(), future, self.run_dit, self.rank)
        self.thread.start()
LiangLiu's avatar
LiangLiu committed
415
        status, out = await future
LiangLiu's avatar
LiangLiu committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        if not status:
            return False

        if self.rank == 0:
            await data_manager.save_tensor(out, outputs["latents"])

        del out
        torch.cuda.empty_cache()
        gc.collect()
        return True

    def run_dit(self):
        self.runner.init_run()
        assert self.runner.video_segment_num == 1, "DiTWorker only support single segment"
PengGao's avatar
PengGao committed
430
        latents = self.runner.run_segment()
LiangLiu's avatar
LiangLiu committed
431
        self.runner.end_run()
helloyongyang's avatar
helloyongyang committed
432
        return latents
LiangLiu's avatar
LiangLiu committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498


class VaeDecoderWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        vae_encoder, self.runner.vae_decoder = self.runner.load_vae()
        self.runner.vfi_model = self.runner.load_vfi_model() if "video_frame_interpolation" in self.runner.config else None
        del vae_encoder

    @class_try_catch_async
    async def run(self, inputs, outputs, params, data_manager):
        with tempfile.TemporaryDirectory() as tmp_dir:
            tmp_video_path, output_video_path = self.prepare_output_video(params, outputs, tmp_dir, data_manager)
            logger.info(f"run params: {params}, {inputs}, {outputs}")
            self.set_inputs(params)

            device = torch.device("cuda", self.rank)
            latents = await data_manager.load_tensor(inputs["latents"], device)
            self.runner.gen_video = self.runner.run_vae_decoder(latents)
            self.runner.process_images_after_vae_decoder(save_video=True)

            await self.save_output_video(tmp_video_path, output_video_path, data_manager)

            del latents
            torch.cuda.empty_cache()
            gc.collect()
            return True


class SegmentDiTWorker(BaseWorker):
    def __init__(self, args):
        super().__init__(args)
        self.runner.model = self.runner.load_transformer()
        self.runner.vae_encoder, self.runner.vae_decoder = self.runner.load_vae()
        self.runner.vfi_model = self.runner.load_vfi_model() if "video_frame_interpolation" in self.runner.config else None
        if self.is_audio_model():
            self.runner.audio_encoder = self.runner.load_audio_encoder()
            self.runner.audio_adapter = self.runner.load_audio_adapter()
            self.runner.model.set_audio_adapter(self.runner.audio_adapter)

    @class_try_catch_async_with_thread
    async def run(self, inputs, outputs, params, data_manager):
        with tempfile.TemporaryDirectory() as tmp_dir:
            tmp_video_path, output_video_path = self.prepare_output_video(params, outputs, tmp_dir, data_manager)
            await self.prepare_input_audio(params, inputs, tmp_dir, data_manager)
            logger.info(f"run params: {params}, {inputs}, {outputs}")
            self.set_inputs(params)

            await self.prepare_dit_inputs(inputs, data_manager)
            self.runner.stop_signal = False
            future = asyncio.Future()
            self.thread = RunnerThread(asyncio.get_running_loop(), future, self.run_dit, self.rank)
            self.thread.start()
            status, _ = await future
            if not status:
                return False

            await self.save_output_video(tmp_video_path, output_video_path, data_manager)

            torch.cuda.empty_cache()
            gc.collect()
            return True

    def run_dit(self):
        self.runner.run_main()
        self.runner.process_images_after_vae_decoder(save_video=True)