__main__.py 14.3 KB
Newer Older
LiangLiu's avatar
LiangLiu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import argparse
import asyncio
import json
import os
import signal
import sys
import traceback
import uuid

import aiohttp
import torch
import torch.distributed as dist
from loguru import logger

from lightx2v.deploy.data_manager import LocalDataManager, S3DataManager
from lightx2v.deploy.task_manager import TaskStatus
from lightx2v.deploy.worker.hub import DiTWorker, ImageEncoderWorker, PipelineWorker, SegmentDiTWorker, TextEncoderWorker, VaeDecoderWorker, VaeEncoderWorker
yihuiwen's avatar
yihuiwen committed
18
from lightx2v.server.metrics import metrics
LiangLiu's avatar
LiangLiu committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

RUNNER_MAP = {
    "pipeline": PipelineWorker,
    "text_encoder": TextEncoderWorker,
    "image_encoder": ImageEncoderWorker,
    "vae_encoder": VaeEncoderWorker,
    "vae_decoder": VaeDecoderWorker,
    "dit": DiTWorker,
    "segment_dit": SegmentDiTWorker,
}

# {task_id: {"server": xx, "worker_name": xx, "identity": xx}}
RUNNING_SUBTASKS = {}
WORKER_SECRET_KEY = os.getenv("WORKER_SECRET_KEY", "worker-secret-key-change-in-production")
HEADERS = {"Authorization": f"Bearer {WORKER_SECRET_KEY}", "Content-Type": "application/json"}
STOPPED = False
WORLD_SIZE = int(os.environ.get("WORLD_SIZE", 1))
RANK = int(os.environ.get("RANK", 0))
TARGET_RANK = WORLD_SIZE - 1


async def ping_life(server_url, worker_identity, keys):
    url = server_url + "/api/v1/worker/ping/life"
    params = {"worker_identity": worker_identity, "worker_keys": keys}
    while True:
        try:
            logger.info(f"{worker_identity} pinging life ...")
            async with aiohttp.ClientSession() as session:
                async with session.post(url, data=json.dumps(params), headers=HEADERS) as ret:
                    if ret.status == 200:
                        ret = await ret.json()
                        logger.info(f"{worker_identity} ping life: {ret}")
                        if ret["msg"] == "delete":
                            logger.warning(f"{worker_identity} deleted")
                            # asyncio.create_task(shutdown(asyncio.get_event_loop()))
                            return
                        await asyncio.sleep(10)
                    else:
                        error_text = await ret.text()
                        raise Exception(f"{worker_identity} ping life fail: [{ret.status}], error: {error_text}")
        except asyncio.CancelledError:
            logger.warning("Ping life cancelled, shutting down...")
            raise asyncio.CancelledError
        except:  # noqa
            logger.warning(f"Ping life failed: {traceback.format_exc()}")
            await asyncio.sleep(10)


async def ping_subtask(server_url, worker_identity, task_id, worker_name, queue, running_task, ping_interval):
    url = server_url + "/api/v1/worker/ping/subtask"
    params = {
        "worker_identity": worker_identity,
        "task_id": task_id,
        "worker_name": worker_name,
        "queue": queue,
    }
    while True:
        try:
            logger.info(f"{worker_identity} pinging subtask {task_id} {worker_name} ...")
            async with aiohttp.ClientSession() as session:
                async with session.post(url, data=json.dumps(params), headers=HEADERS) as ret:
                    if ret.status == 200:
                        ret = await ret.json()
                        logger.info(f"{worker_identity} ping subtask {task_id} {worker_name}: {ret}")
                        if ret["msg"] == "delete":
                            logger.warning(f"{worker_identity} subtask {task_id} {worker_name} deleted")
                            running_task.cancel()
                            return
                        await asyncio.sleep(ping_interval)
                    else:
                        error_text = await ret.text()
                        raise Exception(f"{worker_identity} ping subtask fail: [{ret.status}], error: {error_text}")
        except asyncio.CancelledError:
            logger.warning(f"Ping subtask {task_id} {worker_name} cancelled")
            raise asyncio.CancelledError
        except:  # noqa
            logger.warning(f"Ping subtask failed: {traceback.format_exc()}")
            await asyncio.sleep(10)


async def fetch_subtasks(server_url, worker_keys, worker_identity, max_batch, timeout):
    url = server_url + "/api/v1/worker/fetch"
    params = {
        "worker_keys": worker_keys,
        "worker_identity": worker_identity,
        "max_batch": max_batch,
        "timeout": timeout,
    }
    try:
        logger.info(f"{worker_identity} fetching {worker_keys} with timeout: {timeout}s ...")
        async with aiohttp.ClientSession() as session:
            async with session.post(url, data=json.dumps(params), headers=HEADERS, timeout=timeout + 1) as ret:
                if ret.status == 200:
                    ret = await ret.json()
                    subtasks = ret["subtasks"]
                    for sub in subtasks:
                        sub["server_url"] = server_url
                        sub["worker_identity"] = worker_identity
                        RUNNING_SUBTASKS[sub["task_id"]] = sub
                    logger.info(f"{worker_identity} fetch {worker_keys} ok: {subtasks}")
                    return subtasks
                else:
                    error_text = await ret.text()
                    logger.warning(f"{worker_identity} fetch {worker_keys} fail: [{ret.status}], error: {error_text}")
                    return None
    except asyncio.CancelledError:
        logger.warning("Fetch subtasks cancelled, shutting down...")
        raise asyncio.CancelledError
    except:  # noqa
        logger.warning(f"Fetch subtasks failed: {traceback.format_exc()}")
        await asyncio.sleep(10)


async def report_task(server_url, task_id, worker_name, status, worker_identity, queue, **kwargs):
    url = server_url + "/api/v1/worker/report"
    params = {
        "task_id": task_id,
        "worker_name": worker_name,
        "status": status,
        "worker_identity": worker_identity,
        "queue": queue,
        "fail_msg": "" if status == TaskStatus.SUCCEED.name else "worker failed",
    }
    try:
        async with aiohttp.ClientSession() as session:
            async with session.post(url, data=json.dumps(params), headers=HEADERS) as ret:
                if ret.status == 200:
                    RUNNING_SUBTASKS.pop(task_id)
                    ret = await ret.json()
                    logger.info(f"{worker_identity} report {task_id} {worker_name} {status} ok")
                    return True
                else:
                    error_text = await ret.text()
                    logger.warning(f"{worker_identity} report {task_id} {worker_name} {status} fail: [{ret.status}], error: {error_text}")
                    return False
    except asyncio.CancelledError:
        logger.warning("Report task cancelled, shutting down...")
        raise asyncio.CancelledError
    except:  # noqa
        logger.warning(f"Report task failed: {traceback.format_exc()}")


async def boradcast_subtasks(subtasks):
    subtasks = [] if subtasks is None else subtasks
    if WORLD_SIZE <= 1:
        return subtasks
    try:
        if RANK == TARGET_RANK:
            subtasks_data = json.dumps(subtasks, ensure_ascii=False).encode("utf-8")
            subtasks_tensor = torch.frombuffer(bytearray(subtasks_data), dtype=torch.uint8).to(device="cuda")
            data_size = subtasks_tensor.shape[0]
            size_tensor = torch.tensor([data_size], dtype=torch.int32).to(device="cuda")
            logger.info(f"rank {RANK} send subtasks: {subtasks_tensor.shape}, {size_tensor}")
        else:
            size_tensor = torch.zeros(1, dtype=torch.int32, device="cuda")

        dist.broadcast(size_tensor, src=TARGET_RANK)
        if RANK != TARGET_RANK:
            subtasks_tensor = torch.zeros(size_tensor.item(), dtype=torch.uint8, device="cuda")
        dist.broadcast(subtasks_tensor, src=TARGET_RANK)

        if RANK != TARGET_RANK:
            subtasks_data = subtasks_tensor.cpu().numpy().tobytes()
            subtasks = json.loads(subtasks_data.decode("utf-8"))
            logger.info(f"rank {RANK} recv subtasks: {subtasks}")
        return subtasks

    except:  # noqa
        logger.error(f"Broadcast subtasks failed: {traceback.format_exc()}")
        return []


async def sync_subtask():
    if WORLD_SIZE <= 1:
        return
    try:
        logger.info(f"Sync subtask {RANK}/{WORLD_SIZE} wait barrier")
        dist.barrier()
        logger.info(f"Sync subtask {RANK}/{WORLD_SIZE} ok")
    except:  # noqa
        logger.error(f"Sync subtask failed: {traceback.format_exc()}")


async def main(args):
    if args.model_name == "":
        args.model_name = args.model_cls
LiangLiu's avatar
LiangLiu committed
205
206
207
    if args.task_name == "":
        args.task_name = args.task
    worker_keys = [args.task_name, args.model_name, args.stage, args.worker]
LiangLiu's avatar
LiangLiu committed
208

yihuiwen's avatar
yihuiwen committed
209
210
    metrics.server_process(args.metric_port)

LiangLiu's avatar
LiangLiu committed
211
212
    data_manager = None
    if args.data_url.startswith("/"):
LiangLiu's avatar
LiangLiu committed
213
        data_manager = LocalDataManager(args.data_url, None)
LiangLiu's avatar
LiangLiu committed
214
    elif args.data_url.startswith("{"):
LiangLiu's avatar
LiangLiu committed
215
        data_manager = S3DataManager(args.data_url, None)
LiangLiu's avatar
LiangLiu committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    else:
        raise NotImplementedError
    await data_manager.init()

    if WORLD_SIZE > 1:
        dist.init_process_group(backend="nccl")
        torch.cuda.set_device(dist.get_rank())
        logger.info(f"Distributed initialized: rank={RANK}, world_size={WORLD_SIZE}")

    runner = RUNNER_MAP[args.worker](args)
    if WORLD_SIZE > 1:
        dist.barrier()
    # asyncio.create_task(ping_life(args.server, args.identity, worker_keys))

    while True:
        subtasks = None
        if RANK == TARGET_RANK:
            subtasks = await fetch_subtasks(args.server, worker_keys, args.identity, args.max_batch, args.timeout)
        subtasks = await boradcast_subtasks(subtasks)

        for sub in subtasks:
            status = TaskStatus.FAILED.name
            ping_task = None
            try:
                run_task = asyncio.create_task(runner.run(sub["inputs"], sub["outputs"], sub["params"], data_manager))
                if RANK == TARGET_RANK:
                    ping_task = asyncio.create_task(ping_subtask(args.server, sub["worker_identity"], sub["task_id"], sub["worker_name"], sub["queue"], run_task, args.ping_interval))
                ret = await run_task
                if ret is True:
                    status = TaskStatus.SUCCEED.name

            except asyncio.CancelledError:
                if STOPPED:
                    logger.warning("Main loop cancelled, already stopped, should exit")
                    return
                logger.warning("Main loop cancelled, do not shut down")

            finally:
                if RANK == TARGET_RANK and sub["task_id"] in RUNNING_SUBTASKS:
                    try:
                        await report_task(status=status, **sub)
                    except:  # noqa
                        logger.warning(f"Report failed: {traceback.format_exc()}")
                if ping_task:
                    ping_task.cancel()
                await sync_subtask()


async def shutdown(loop):
    logger.warning("Received kill signal")
    global STOPPED
    STOPPED = True

    for t in asyncio.all_tasks():
        if t is not asyncio.current_task():
            logger.warning(f"Cancel async task {t} ...")
            t.cancel()

    # Report remaining running subtasks failed
    if RANK == TARGET_RANK:
        task_ids = list(RUNNING_SUBTASKS.keys())
        for task_id in task_ids:
            try:
                s = RUNNING_SUBTASKS[task_id]
                logger.warning(f"Report {task_id} {s['worker_name']} {TaskStatus.FAILED.name} ...")
                await report_task(status=TaskStatus.FAILED.name, **s)
            except:  # noqa
                logger.warning(f"Report task {task_id} failed: {traceback.format_exc()}")

    if WORLD_SIZE > 1:
        dist.destroy_process_group()

    # Force exit after a short delay to ensure cleanup
    def force_exit():
        logger.warning("Force exiting process...")
        sys.exit(0)

    loop.call_later(2, force_exit)


LiangLiu's avatar
LiangLiu committed
296
297
298
# align args like infer.py
def align_args(args):
    args.seed = 42
299
    args.sf_model_path = args.sf_model_path if args.sf_model_path else ""
LiangLiu's avatar
LiangLiu committed
300
301
302
303
304
305
    args.use_prompt_enhancer = False
    args.prompt = ""
    args.negative_prompt = ""
    args.image_path = ""
    args.last_frame_path = ""
    args.audio_path = ""
306
307
308
309
    args.src_pose_path = None
    args.src_face_path = None
    args.src_bg_path = None
    args.src_mask_path = None
LiangLiu's avatar
LiangLiu committed
310
311
312
313
314
    args.src_ref_images = None
    args.src_video = None
    args.src_mask = None
    args.save_result_path = ""
    args.return_result_tensor = False
315
    args.is_live = True
LiangLiu's avatar
LiangLiu committed
316
317


LiangLiu's avatar
LiangLiu committed
318
319
320
321
322
323
324
325
326
327
328
329
# =========================
# Main Entry
# =========================

if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    cur_dir = os.path.dirname(os.path.abspath(__file__))
    base_dir = os.path.abspath(os.path.join(cur_dir, "../../.."))
    dft_data_url = os.path.join(base_dir, "local_data")

    parser.add_argument("--task", type=str, required=True)
LiangLiu's avatar
LiangLiu committed
330
    parser.add_argument("--task_name", type=str, default="")
LiangLiu's avatar
LiangLiu committed
331
332
333
334
335
336
337
338
339
    parser.add_argument("--model_cls", type=str, required=True)
    parser.add_argument("--model_name", type=str, default="")
    parser.add_argument("--stage", type=str, required=True)
    parser.add_argument("--worker", type=str, required=True)
    parser.add_argument("--identity", type=str, default="")
    parser.add_argument("--max_batch", type=int, default=1)
    parser.add_argument("--timeout", type=int, default=300)
    parser.add_argument("--ping_interval", type=int, default=10)

yihuiwen's avatar
yihuiwen committed
340
341
    parser.add_argument("--metric_port", type=int, default=8001)

LiangLiu's avatar
LiangLiu committed
342
    parser.add_argument("--model_path", type=str, required=True)
343
    parser.add_argument("--sf_model_path", type=str, default="")
LiangLiu's avatar
LiangLiu committed
344
345
346
347
348
349
    parser.add_argument("--config_json", type=str, required=True)

    parser.add_argument("--server", type=str, default="http://127.0.0.1:8080")
    parser.add_argument("--data_url", type=str, default=dft_data_url)

    args = parser.parse_args()
LiangLiu's avatar
LiangLiu committed
350
    align_args(args)
LiangLiu's avatar
LiangLiu committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    if args.identity == "":
        # TODO: spec worker instance identity by k8s env
        args.identity = "worker-" + str(uuid.uuid4())[:8]
    logger.info(f"args: {args}")

    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)

    for s in [signal.SIGINT, signal.SIGTERM]:
        loop.add_signal_handler(s, lambda: asyncio.create_task(shutdown(loop)))

    try:
        loop.create_task(main(args), name="main")
        loop.run_forever()
    finally:
        loop.close()
        logger.warning("Event loop closed")