converter.py 26.1 KB
Newer Older
PengGao's avatar
PengGao committed
1
import argparse
2
3
4
import gc
import glob
import json
PengGao's avatar
PengGao committed
5
6
import os
import re
gushiqiao's avatar
gushiqiao committed
7
import shutil
PengGao's avatar
PengGao committed
8
9
from collections import defaultdict

10
11
import torch
from loguru import logger
gushiqiao's avatar
gushiqiao committed
12
from qtorch.quant import float_quantize
PengGao's avatar
PengGao committed
13
14
15
from safetensors import safe_open
from safetensors import torch as st
from tqdm import tqdm
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319


def get_key_mapping_rules(direction, model_type):
    if model_type == "wan_dit":
        unified_rules = [
            {
                "forward": (r"^head\.head$", "proj_out"),
                "backward": (r"^proj_out$", "head.head"),
            },
            {
                "forward": (r"^head\.modulation$", "scale_shift_table"),
                "backward": (r"^scale_shift_table$", "head.modulation"),
            },
            {
                "forward": (
                    r"^text_embedding\.0\.",
                    "condition_embedder.text_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_1\.",
                    "text_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^text_embedding\.2\.",
                    "condition_embedder.text_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_2\.",
                    "text_embedding.2.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.0\.",
                    "condition_embedder.time_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_1\.",
                    "time_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.2\.",
                    "condition_embedder.time_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_2\.",
                    "time_embedding.2.",
                ),
            },
            {
                "forward": (r"^time_projection\.1\.", "condition_embedder.time_proj."),
                "backward": (r"^condition_embedder.time_proj\.", "time_projection.1."),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.q\.", r"blocks.\1.attn1.to_q."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_q\.",
                    r"blocks.\1.self_attn.q.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.k\.", r"blocks.\1.attn1.to_k."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_k\.",
                    r"blocks.\1.self_attn.k.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.v\.", r"blocks.\1.attn1.to_v."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_v\.",
                    r"blocks.\1.self_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.o\.",
                    r"blocks.\1.attn1.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_out\.0\.",
                    r"blocks.\1.self_attn.o.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.q\.",
                    r"blocks.\1.attn2.to_q.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_q\.",
                    r"blocks.\1.cross_attn.q.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k\.",
                    r"blocks.\1.attn2.to_k.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_k\.",
                    r"blocks.\1.cross_attn.k.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v\.",
                    r"blocks.\1.attn2.to_v.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_v\.",
                    r"blocks.\1.cross_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.o\.",
                    r"blocks.\1.attn2.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_out\.0\.",
                    r"blocks.\1.cross_attn.o.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.norm3\.", r"blocks.\1.norm2."),
                "backward": (r"blocks\.(\d+)\.norm2\.", r"blocks.\1.norm3."),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.0\.", r"blocks.\1.ffn.net.0.proj."),
                "backward": (
                    r"blocks\.(\d+)\.ffn\.net\.0\.proj\.",
                    r"blocks.\1.ffn.0.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.2\.", r"blocks.\1.ffn.net.2."),
                "backward": (r"blocks\.(\d+)\.ffn\.net\.2\.", r"blocks.\1.ffn.2."),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.modulation\.",
                    r"blocks.\1.scale_shift_table.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.scale_shift_table(?=\.|$)",
                    r"blocks.\1.modulation",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k_img\.",
                    r"blocks.\1.attn2.add_k_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_k_proj\.",
                    r"blocks.\1.cross_attn.k_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v_img\.",
                    r"blocks.\1.attn2.add_v_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_v_proj\.",
                    r"blocks.\1.cross_attn.v_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k_img\.weight",
                    r"blocks.\1.attn2.norm_added_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_added_k\.weight",
                    r"blocks.\1.cross_attn.norm_k_img.weight",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.0\.",
                    r"condition_embedder.image_embedder.norm1.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm1\.",
                    r"img_emb.proj.0.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.1\.",
                    r"condition_embedder.image_embedder.ff.net.0.proj.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.0\.proj\.",
                    r"img_emb.proj.1.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.3\.",
                    r"condition_embedder.image_embedder.ff.net.2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.2\.",
                    r"img_emb.proj.3.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.4\.",
                    r"condition_embedder.image_embedder.norm2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm2\.",
                    r"img_emb.proj.4.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_q\.weight",
                    r"blocks.\1.attn1.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_q\.weight",
                    r"blocks.\1.self_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_k\.weight",
                    r"blocks.\1.attn1.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_k\.weight",
                    r"blocks.\1.self_attn.norm_k.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_q\.weight",
                    r"blocks.\1.attn2.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_q\.weight",
                    r"blocks.\1.cross_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k\.weight",
                    r"blocks.\1.attn2.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_k\.weight",
                    r"blocks.\1.cross_attn.norm_k.weight",
                ),
            },
            # head projection mapping
            {
                "forward": (r"^head\.head\.", "proj_out."),
                "backward": (r"^proj_out\.", "head.head."),
            },
        ]

        if direction == "forward":
            return [rule["forward"] for rule in unified_rules]
        elif direction == "backward":
            return [rule["backward"] for rule in unified_rules]
        else:
            raise ValueError(f"Invalid direction: {direction}")
    else:
        raise ValueError(f"Unsupported model type: {model_type}")


def quantize_tensor(w, w_bit=8, dtype=torch.int8):
    """
    Quantize a 2D tensor to specified bit width using symmetric min-max quantization

    Args:
        w: Input tensor to quantize (must be 2D)
        w_bit: Quantization bit width (default: 8)

    Returns:
        quantized: Quantized tensor (int8)
        scales: Scaling factors per row
    """
    if w.dim() != 2:
        raise ValueError(f"Only 2D tensors supported. Got {w.dim()}D tensor")
    if torch.isnan(w).any():
        raise ValueError("Tensor contains NaN values")
    if w_bit != 8:
        raise ValueError("Only support 8 bits")

    org_w_shape = w.shape
    # Calculate quantization parameters
    max_val = w.abs().amax(dim=1, keepdim=True).clamp(min=1e-5)

    if dtype == torch.float8_e4m3fn:
gushiqiao's avatar
gushiqiao committed
320
321
        finfo = torch.finfo(dtype)
        qmin, qmax = finfo.min, finfo.max
322
323
324
325
326
327
328
    elif dtype == torch.int8:
        qmin, qmax = -128, 127

    # Quantize tensor
    scales = max_val / qmax

    if dtype == torch.float8_e4m3fn:
gushiqiao's avatar
gushiqiao committed
329
330
331
        scaled_tensor = w / scales
        scaled_tensor = torch.clip(scaled_tensor, qmin, qmax)
        w_q = float_quantize(scaled_tensor.float(), 4, 3, rounding="nearest").to(dtype)
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    else:
        w_q = torch.clamp(torch.round(w / scales), qmin, qmax).to(dtype)

    assert torch.isnan(scales).sum() == 0
    assert torch.isnan(w_q).sum() == 0

    scales = scales.view(org_w_shape[0], -1)
    w_q = w_q.reshape(org_w_shape)

    return w_q, scales


def quantize_model(
    weights,
    w_bit=8,
    target_keys=["attn", "ffn"],
    key_idx=2,
    ignore_key=None,
gushiqiao's avatar
gushiqiao committed
350
351
    linear_dtype=torch.int8,
    non_linear_dtype=torch.float,
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
):
    """
    Quantize model weights in-place

    Args:
        weights: Model state dictionary
        w_bit: Quantization bit width
        target_keys: List of module names to quantize

    Returns:
        Modified state dictionary with quantized weights and scales
    """
    total_quantized = 0
    total_size = 0
    keys = list(weights.keys())

    with tqdm(keys, desc="Quantizing weights") as pbar:
        for key in pbar:
            pbar.set_postfix(current_key=key, refresh=False)

            if ignore_key is not None and ignore_key in key:
                del weights[key]
                continue

            tensor = weights[key]

            # Skip non-tensors, small tensors, and non-2D tensors
gushiqiao's avatar
gushiqiao committed
379
            if not isinstance(tensor, torch.Tensor) or tensor.dim() != 2:
gushiqiao's avatar
gushiqiao committed
380
381
                if tensor.dtype != non_linear_dtype:
                    weights[key] = tensor.to(non_linear_dtype)
382
383
384
385
386
                continue

            # Check if key matches target modules
            parts = key.split(".")
            if len(parts) < key_idx + 1 or parts[key_idx] not in target_keys:
gushiqiao's avatar
gushiqiao committed
387
388
                if tensor.dtype != non_linear_dtype:
                    weights[key] = tensor.to(non_linear_dtype)
389
390
391
392
                continue

            try:
                # Quantize tensor and store results
gushiqiao's avatar
gushiqiao committed
393
                w_q, scales = quantize_tensor(tensor, w_bit, linear_dtype)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

                # Replace original tensor and store scales
                weights[key] = w_q
                weights[key + "_scale"] = scales

                total_quantized += 1
                total_size += tensor.numel() * tensor.element_size() / (1024**2)  # MB
                del w_q, scales

            except Exception as e:
                logger.error(f"Error quantizing {key}: {str(e)}")

            gc.collect()

        logger.info(f"Quantized {total_quantized} tensors, reduced size by {total_size:.2f} MB")
    return weights


GoatWu's avatar
GoatWu committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
def load_loras(lora_path, weight_dict, alpha):
    logger.info(f"Loading LoRA from: {lora_path}")
    with safe_open(lora_path, framework="pt") as f:
        lora_weights = {k: f.get_tensor(k) for k in f.keys()}

    lora_pairs = {}
    lora_diffs = {}
    prefix = "diffusion_model."

    def try_lora_pair(key, suffix_a, suffix_b, target_suffix):
        if key.endswith(suffix_a):
            base_name = key[len(prefix) :].replace(suffix_a, target_suffix)
            pair_key = key.replace(suffix_a, suffix_b)
            if pair_key in lora_weights:
                lora_pairs[base_name] = (key, pair_key)

    def try_lora_diff(key, suffix, target_suffix):
        if key.endswith(suffix):
            base_name = key[len(prefix) :].replace(suffix, target_suffix)
            lora_diffs[base_name] = key

    for key in lora_weights.keys():
        if not key.startswith(prefix):
            continue

        try_lora_pair(key, "lora_A.weight", "lora_B.weight", "weight")
        try_lora_pair(key, "lora_down.weight", "lora_up.weight", "weight")
        try_lora_diff(key, "diff", "weight")
        try_lora_diff(key, "diff_b", "bias")
441
        try_lora_diff(key, "diff_m", "modulation")
GoatWu's avatar
GoatWu committed
442
443
444
445
446
447
448
449
450
451
452
453

    applied_count = 0
    for name, param in weight_dict.items():
        if name in lora_pairs:
            name_lora_A, name_lora_B = lora_pairs[name]
            lora_A = lora_weights[name_lora_A].to(param.device, param.dtype)
            lora_B = lora_weights[name_lora_B].to(param.device, param.dtype)
            param += torch.matmul(lora_B, lora_A) * alpha
            applied_count += 1
        elif name in lora_diffs:
            name_diff = lora_diffs[name]
            lora_diff = lora_weights[name_diff].to(param.device, param.dtype)
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
454
455
456
457
458
            try:
                param += lora_diff * alpha
                applied_count += 1
            except Exception as e:
                continue
GoatWu's avatar
GoatWu committed
459
460
461
    logger.info(f"Applied {applied_count} LoRA weight adjustments")


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def convert_weights(args):
    if os.path.isdir(args.source):
        src_files = glob.glob(os.path.join(args.source, "*.safetensors"), recursive=True)
    elif args.source.endswith((".pth", ".safetensors", "pt")):
        src_files = [args.source]
    else:
        raise ValueError("Invalid input path")

    merged_weights = {}
    logger.info(f"Processing source files: {src_files}")
    for file_path in tqdm(src_files, desc="Loading weights"):
        logger.info(f"Loading weights from: {file_path}")
        if file_path.endswith(".pt") or file_path.endswith(".pth"):
            weights = torch.load(file_path, map_location=args.device, weights_only=True)
            if args.model_type == "hunyuan_dit":
                weights = weights["module"]
        elif file_path.endswith(".safetensors"):
            with safe_open(file_path, framework="pt") as f:
                weights = {k: f.get_tensor(k) for k in f.keys()}

        duplicate_keys = set(weights.keys()) & set(merged_weights.keys())
        if duplicate_keys:
            raise ValueError(f"Duplicate keys found: {duplicate_keys} in file {file_path}")
        merged_weights.update(weights)

GoatWu's avatar
GoatWu committed
487
488
489
490
491
492
493
494
495
496
    if args.lora_path is not None:
        # Handle alpha list - if single alpha, replicate for all LoRAs
        if len(args.lora_alpha) == 1 and len(args.lora_path) > 1:
            args.lora_alpha = args.lora_alpha * len(args.lora_path)
        elif len(args.lora_alpha) != len(args.lora_path):
            raise ValueError(f"Number of lora_alpha ({len(args.lora_alpha)}) must match number of lora_path ({len(args.lora_path)}) or be 1")

        for path, alpha in zip(args.lora_path, args.lora_alpha):
            load_loras(path, merged_weights, alpha)

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    if args.direction is not None:
        rules = get_key_mapping_rules(args.direction, args.model_type)
        converted_weights = {}
        logger.info("Converting keys...")
        for key in tqdm(merged_weights.keys(), desc="Converting keys"):
            new_key = key
            for pattern, replacement in rules:
                new_key = re.sub(pattern, replacement, new_key)
            converted_weights[new_key] = merged_weights[key]
    else:
        converted_weights = merged_weights

    if args.quantized:
        converted_weights = quantize_model(
            converted_weights,
            w_bit=args.bits,
            target_keys=args.target_keys,
            key_idx=args.key_idx,
            ignore_key=args.ignore_key,
gushiqiao's avatar
gushiqiao committed
516
517
            linear_dtype=args.linear_dtype,
            non_linear_dtype=args.non_linear_dtype,
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        )

    os.makedirs(args.output, exist_ok=True)

    if args.output_ext == ".pth":
        torch.save(converted_weights, os.path.join(args.output, args.output_name + ".pth"))

    else:
        index = {"metadata": {"total_size": 0}, "weight_map": {}}

        if args.save_by_block:
            logger.info("Backward conversion: grouping weights by block")
            block_groups = defaultdict(dict)
            non_block_weights = {}
            block_pattern = re.compile(r"blocks\.(\d+)\.")

            for key, tensor in converted_weights.items():
                match = block_pattern.search(key)
                if match:
                    block_idx = match.group(1)
                    block_groups[block_idx][key] = tensor
                else:
                    non_block_weights[key] = tensor

            for block_idx, weights_dict in tqdm(block_groups.items(), desc="Saving block chunks"):
                output_filename = f"block_{block_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(weights_dict, output_path)
                for key in weights_dict:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

            if non_block_weights:
                output_filename = f"non_block.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(non_block_weights, output_path)
                for key in non_block_weights:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        else:
            chunk_idx = 0
            current_chunk = {}
            for idx, (k, v) in tqdm(enumerate(converted_weights.items()), desc="Saving chunks"):
                current_chunk[k] = v
                if (idx + 1) % args.chunk_size == 0 and args.chunk_size > 0:
                    output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                    output_path = os.path.join(args.output, output_filename)
                    logger.info(f"Saving chunk to: {output_path}")
                    st.save_file(current_chunk, output_path)
                    for key in current_chunk:
                        index["weight_map"][key] = output_filename
                    index["metadata"]["total_size"] += os.path.getsize(output_path)
                    current_chunk = {}
                    chunk_idx += 1

            if current_chunk:
                output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                logger.info(f"Saving final chunk to: {output_path}")
                st.save_file(current_chunk, output_path)
                for key in current_chunk:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        # Save index file
        index_path = os.path.join(args.output, "diffusion_pytorch_model.safetensors.index.json")
        with open(index_path, "w", encoding="utf-8") as f:
            json.dump(index, f, indent=2)
        logger.info(f"Index file written to: {index_path}")

gushiqiao's avatar
gushiqiao committed
589
    if os.path.isdir(args.source) and args.copy_no_weight_files:
gushiqiao's avatar
gushiqiao committed
590
591
592
593
        copy_non_weight_files(args.source, args.output)


def copy_non_weight_files(source_dir, target_dir):
gushiqiao's avatar
Fix  
gushiqiao committed
594
    ignore_extensions = [".pth", ".pt", ".safetensors", ".index.json"]
gushiqiao's avatar
gushiqiao committed
595
596
597

    logger.info(f"Start copying non-weighted files and subdirectories...")

gushiqiao's avatar
Fix  
gushiqiao committed
598
    for item in tqdm(os.listdir(source_dir), desc="copy non-weighted file"):
gushiqiao's avatar
gushiqiao committed
599
600
601
602
603
604
605
606
607
        source_item = os.path.join(source_dir, item)
        target_item = os.path.join(target_dir, item)

        try:
            if os.path.isdir(source_item):
                os.makedirs(target_item, exist_ok=True)
                copy_non_weight_files(source_item, target_item)
            elif os.path.isfile(source_item) and not any(source_item.endswith(ext) for ext in ignore_extensions):
                shutil.copy2(source_item, target_item)
gushiqiao's avatar
Fix  
gushiqiao committed
608
                logger.debug(f"copy file: {source_item} -> {target_item}")
gushiqiao's avatar
gushiqiao committed
609
        except Exception as e:
gushiqiao's avatar
Fix  
gushiqiao committed
610
            logger.error(f"copy {source_item} : {str(e)}")
gushiqiao's avatar
gushiqiao committed
611
612
613

    logger.info(f"Non-weight files and subdirectories copied")

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

def main():
    parser = argparse.ArgumentParser(description="Model weight format converter")
    parser.add_argument("-s", "--source", required=True, help="Input path (file or directory)")
    parser.add_argument("-o_e", "--output_ext", default=".safetensors", choices=[".pth", ".safetensors"])
    parser.add_argument("-o_n", "--output_name", type=str, default="converted", help="Output file name")
    parser.add_argument("-o", "--output", required=True, help="Output directory path")
    parser.add_argument(
        "-d",
        "--direction",
        choices=[None, "forward", "backward"],
        default=None,
        help="Conversion direction: forward = 'lightx2v' -> 'Diffusers', backward = reverse",
    )
    parser.add_argument(
        "-c",
        "--chunk-size",
        type=int,
        default=100,
        help="Chunk size for saving (only applies to forward), 0 = no chunking",
    )
    parser.add_argument(
        "-t",
        "--model_type",
        choices=["wan_dit", "hunyuan_dit", "wan_t5", "wan_clip"],
        default="wan_dit",
        help="Model type",
    )
    parser.add_argument("-b", "--save_by_block", action="store_true")

    # Quantization
    parser.add_argument("--quantized", action="store_true")
    parser.add_argument("--bits", type=int, default=8, choices=[8], help="Quantization bit width")
    parser.add_argument(
        "--device",
        type=str,
        default="cpu",
        help="Device to use for quantization (cpu/cuda)",
    )
    parser.add_argument(
gushiqiao's avatar
gushiqiao committed
654
        "--linear_dtype",
655
656
        type=str,
        choices=["torch.int8", "torch.float8_e4m3fn"],
gushiqiao's avatar
gushiqiao committed
657
658
659
660
661
662
663
664
        help="Data type for linear",
    )
    parser.add_argument(
        "--non_linear_dtype",
        type=str,
        default="torch.float32",
        choices=["torch.bfloat16", "torch.float16"],
        help="Data type for non-linear",
665
    )
GoatWu's avatar
GoatWu committed
666
667
668
669
670
671
672
673
    parser.add_argument("--lora_path", type=str, nargs="*", help="Path(s) to LoRA file(s). Can specify multiple paths separated by spaces.")
    parser.add_argument(
        "--lora_alpha",
        type=float,
        nargs="*",
        default=[1.0],
        help="Alpha for LoRA weight scaling",
    )
gushiqiao's avatar
gushiqiao committed
674
    parser.add_argument("--copy_no_weight_files", action="store_true")
675
676
    args = parser.parse_args()

gushiqiao's avatar
Fix  
gushiqiao committed
677
    if args.quantized:
gushiqiao's avatar
gushiqiao committed
678
679
        args.linear_dtype = eval(args.linear_dtype)
        args.non_linear_dtype = eval(args.non_linear_dtype)
gushiqiao's avatar
Fix  
gushiqiao committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

        model_type_keys_map = {
            "wan_dit": {
                "key_idx": 2,
                "target_keys": ["self_attn", "cross_attn", "ffn"],
                "ignore_key": None,
            },
            "hunyuan_dit": {
                "key_idx": 2,
                "target_keys": [
                    "img_mod",
                    "img_attn_qkv",
                    "img_attn_proj",
                    "img_mlp",
                    "txt_mod",
                    "txt_attn_qkv",
                    "txt_attn_proj",
                    "txt_mlp",
                    "linear1",
                    "linear2",
                    "modulation",
                ],
                "ignore_key": None,
            },
            "wan_t5": {"key_idx": 2, "target_keys": ["attn", "ffn"], "ignore_key": None},
            "wan_clip": {
                "key_idx": 3,
                "target_keys": ["attn", "mlp"],
                "ignore_key": "textual",
            },
        }

        args.target_keys = model_type_keys_map[args.model_type]["target_keys"]
        args.key_idx = model_type_keys_map[args.model_type]["key_idx"]
        args.ignore_key = model_type_keys_map[args.model_type]["ignore_key"]
715
716
717
718
719
720
721
722
723
724
725

    if os.path.isfile(args.output):
        raise ValueError("Output path must be a directory, not a file")

    logger.info("Starting model weight conversion...")
    convert_weights(args)
    logger.info(f"Conversion completed! Files saved to: {args.output}")


if __name__ == "__main__":
    main()