default_runner.py 11.3 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import gc
PengGao's avatar
PengGao committed
2

3
import requests
helloyongyang's avatar
helloyongyang committed
4
5
import torch
import torch.distributed as dist
PengGao's avatar
PengGao committed
6
7
8
from PIL import Image
from loguru import logger
from requests.exceptions import RequestException
PengGao's avatar
PengGao committed
9

helloyongyang's avatar
helloyongyang committed
10
from lightx2v.utils.envs import *
PengGao's avatar
PengGao committed
11
12
from lightx2v.utils.generate_task_id import generate_task_id
from lightx2v.utils.profiler import ProfilingContext, ProfilingContext4Debug
PengGao's avatar
PengGao committed
13
from lightx2v.utils.utils import cache_video, save_to_video, vae_to_comfyui_image
PengGao's avatar
PengGao committed
14

PengGao's avatar
PengGao committed
15
from .base_runner import BaseRunner
16
17


PengGao's avatar
PengGao committed
18
class DefaultRunner(BaseRunner):
helloyongyang's avatar
helloyongyang committed
19
    def __init__(self, config):
PengGao's avatar
PengGao committed
20
        super().__init__(config)
21
        self.has_prompt_enhancer = False
PengGao's avatar
PengGao committed
22
        self.progress_callback = None
Rongjin Yang's avatar
Rongjin Yang committed
23
        if self.config.task == "t2v" and self.config.get("sub_servers", {}).get("prompt_enhancer") is not None:
24
25
26
27
            self.has_prompt_enhancer = True
            if not self.check_sub_servers("prompt_enhancer"):
                self.has_prompt_enhancer = False
                logger.warning("No prompt enhancer server available, disable prompt enhancer.")
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
28
        if not self.has_prompt_enhancer:
Rongjin Yang's avatar
Rongjin Yang committed
29
            self.config.use_prompt_enhancer = False
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
30
        self.set_init_device()
31

32
    def init_modules(self):
gushiqiao's avatar
gushiqiao committed
33
        logger.info("Initializing runner modules...")
34
35
        if not self.config.get("lazy_load", False) and not self.config.get("unload_modules", False):
            self.load_model()
36
37
        elif self.config.get("lazy_load", False):
            assert self.config.get("cpu_offload", False)
38
39
40
41
        self.run_dit = self._run_dit_local
        self.run_vae_decoder = self._run_vae_decoder_local
        if self.config["task"] == "i2v":
            self.run_input_encoder = self._run_input_encoder_local_i2v
42
        else:
43
            self.run_input_encoder = self._run_input_encoder_local_t2v
44

45
    def set_init_device(self):
46
        if self.config.parallel:
47
48
49
            cur_rank = dist.get_rank()
            torch.cuda.set_device(cur_rank)
        if self.config.cpu_offload:
50
            self.init_device = torch.device("cpu")
51
        else:
52
            self.init_device = torch.device("cuda")
53

PengGao's avatar
PengGao committed
54
55
56
57
58
59
60
    def load_vfi_model(self):
        if self.config["video_frame_interpolation"].get("algo", None) == "rife":
            from lightx2v.models.vfi.rife.rife_comfyui_wrapper import RIFEWrapper

            logger.info("Loading RIFE model...")
            return RIFEWrapper(self.config["video_frame_interpolation"]["model_path"])
        else:
61
            raise ValueError(f"Unsupported VFI model: {self.config['video_frame_interpolation']['algo']}")
PengGao's avatar
PengGao committed
62

63
64
    @ProfilingContext("Load models")
    def load_model(self):
65
66
67
68
        self.model = self.load_transformer()
        self.text_encoders = self.load_text_encoder()
        self.image_encoder = self.load_image_encoder()
        self.vae_encoder, self.vae_decoder = self.load_vae()
PengGao's avatar
PengGao committed
69
        self.vfi_model = self.load_vfi_model() if "video_frame_interpolation" in self.config else None
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def check_sub_servers(self, task_type):
        urls = self.config.get("sub_servers", {}).get(task_type, [])
        available_servers = []
        for url in urls:
            try:
                status_url = f"{url}/v1/local/{task_type}/generate/service_status"
                response = requests.get(status_url, timeout=2)
                if response.status_code == 200:
                    available_servers.append(url)
                else:
                    logger.warning(f"Service {url} returned status code {response.status_code}")

            except RequestException as e:
                logger.warning(f"Failed to connect to {url}: {str(e)}")
                continue
        logger.info(f"{task_type} available servers: {available_servers}")
        self.config["sub_servers"][task_type] = available_servers
        return len(available_servers) > 0

helloyongyang's avatar
helloyongyang committed
90
91
    def set_inputs(self, inputs):
        self.config["prompt"] = inputs.get("prompt", "")
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
92
        self.config["use_prompt_enhancer"] = False
93
        if self.has_prompt_enhancer:
94
            self.config["use_prompt_enhancer"] = inputs.get("use_prompt_enhancer", False)  # Reset use_prompt_enhancer from clinet side.
helloyongyang's avatar
helloyongyang committed
95
96
97
        self.config["negative_prompt"] = inputs.get("negative_prompt", "")
        self.config["image_path"] = inputs.get("image_path", "")
        self.config["save_video_path"] = inputs.get("save_video_path", "")
PengGao's avatar
PengGao committed
98
99
100
101
102
103
104
105
        self.config["infer_steps"] = inputs.get("infer_steps", self.config.get("infer_steps", 5))
        self.config["target_video_length"] = inputs.get("target_video_length", self.config.get("target_video_length", 81))
        self.config["seed"] = inputs.get("seed", self.config.get("seed", 42))
        self.config["audio_path"] = inputs.get("audio_path", "")  # for wan-audio
        self.config["video_duration"] = inputs.get("video_duration", 5)  # for wan-audio

        # self.config["sample_shift"] = inputs.get("sample_shift", self.config.get("sample_shift", 5))
        # self.config["sample_guide_scale"] = inputs.get("sample_guide_scale", self.config.get("sample_guide_scale", 5))
helloyongyang's avatar
helloyongyang committed
106

PengGao's avatar
PengGao committed
107
108
109
    def set_progress_callback(self, callback):
        self.progress_callback = callback

helloyongyang's avatar
helloyongyang committed
110
111
112
    def run(self, total_steps=None):
        if total_steps is None:
            total_steps = self.model.scheduler.infer_steps
PengGao's avatar
PengGao committed
113
114
        for step_index in range(total_steps):
            logger.info(f"==> step_index: {step_index + 1} / {total_steps}")
115
116
117
118
119
120
121
122
123
124

            with ProfilingContext4Debug("step_pre"):
                self.model.scheduler.step_pre(step_index=step_index)

            with ProfilingContext4Debug("infer"):
                self.model.infer(self.inputs)

            with ProfilingContext4Debug("step_post"):
                self.model.scheduler.step_post()

PengGao's avatar
PengGao committed
125
            if self.progress_callback:
126
                self.progress_callback(((step_index + 1) / total_steps) * 100, 100)
PengGao's avatar
PengGao committed
127

128
129
        return self.model.scheduler.latents, self.model.scheduler.generator

helloyongyang's avatar
helloyongyang committed
130
    def run_step(self):
131
        self.inputs = self.run_input_encoder()
helloyongyang's avatar
helloyongyang committed
132
133
        self.set_target_shape()
        self.run_dit(total_steps=1)
helloyongyang's avatar
helloyongyang committed
134
135

    def end_run(self):
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
136
137
        self.model.scheduler.clear()
        del self.inputs, self.model.scheduler
gushiqiao's avatar
gushiqiao committed
138
139
140
141
142
143
144
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            if hasattr(self.model.transformer_infer, "weights_stream_mgr"):
                self.model.transformer_infer.weights_stream_mgr.clear()
            if hasattr(self.model.transformer_weights, "clear"):
                self.model.transformer_weights.clear()
            self.model.pre_weight.clear()
            self.model.post_weight.clear()
145
            del self.model
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
146
        torch.cuda.empty_cache()
147
        gc.collect()
helloyongyang's avatar
helloyongyang committed
148

149
    @ProfilingContext("Run Encoders")
PengGao's avatar
PengGao committed
150
    def _run_input_encoder_local_i2v(self):
151
152
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = Image.open(self.config["image_path"]).convert("RGB")
helloyongyang's avatar
helloyongyang committed
153
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
helloyongyang's avatar
helloyongyang committed
154
        vae_encode_out = self.run_vae_encoder(img)
155
        text_encoder_output = self.run_text_encoder(prompt, img)
156
157
        torch.cuda.empty_cache()
        gc.collect()
158
159
160
        return self.get_encoder_output_i2v(clip_encoder_out, vae_encode_out, text_encoder_output, img)

    @ProfilingContext("Run Encoders")
PengGao's avatar
PengGao committed
161
    def _run_input_encoder_local_t2v(self):
162
163
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        text_encoder_output = self.run_text_encoder(prompt, None)
164
165
        torch.cuda.empty_cache()
        gc.collect()
166
167
168
169
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": None,
        }
170
171

    @ProfilingContext("Run DiT")
helloyongyang's avatar
helloyongyang committed
172
    def _run_dit_local(self, total_steps=None):
gushiqiao's avatar
gushiqiao committed
173
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
174
            self.model = self.load_transformer()
175
176
        self.init_scheduler()
        self.model.scheduler.prepare(self.inputs["image_encoder_output"])
gushiqiao's avatar
gushiqiao committed
177
        if self.config.get("model_cls") == "wan2.2" and self.config["task"] == "i2v":
178
            self.inputs["image_encoder_output"]["vae_encoder_out"] = None
helloyongyang's avatar
helloyongyang committed
179
        latents, generator = self.run(total_steps)
180
181
182
183
        self.end_run()
        return latents, generator

    @ProfilingContext("Run VAE Decoder")
PengGao's avatar
PengGao committed
184
    def _run_vae_decoder_local(self, latents, generator):
gushiqiao's avatar
gushiqiao committed
185
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
186
            self.vae_decoder = self.load_vae_decoder()
187
        images = self.vae_decoder.decode(latents, generator=generator, config=self.config)
gushiqiao's avatar
gushiqiao committed
188
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
gushiqiao's avatar
gushiqiao committed
189
            del self.vae_decoder
190
191
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
192
193
        return images

194
195
196
197
198
    def post_prompt_enhancer(self):
        while True:
            for url in self.config["sub_servers"]["prompt_enhancer"]:
                response = requests.get(f"{url}/v1/local/prompt_enhancer/generate/service_status").json()
                if response["service_status"] == "idle":
199
200
201
202
203
204
205
                    response = requests.post(
                        f"{url}/v1/local/prompt_enhancer/generate",
                        json={
                            "task_id": generate_task_id(),
                            "prompt": self.config["prompt"],
                        },
                    )
206
207
208
209
                    enhanced_prompt = response.json()["output"]
                    logger.info(f"Enhanced prompt: {enhanced_prompt}")
                    return enhanced_prompt

210
211
212
    def run_pipeline(self, save_video=True):
        if self.config["use_prompt_enhancer"]:
            self.config["prompt_enhanced"] = self.post_prompt_enhancer()
PengGao's avatar
PengGao committed
213

214
        self.inputs = self.run_input_encoder()
helloyongyang's avatar
helloyongyang committed
215
216
        self.set_target_shape()
        latents, generator = self.run_dit()
PengGao's avatar
PengGao committed
217

218
        images = self.run_vae_decoder(latents, generator)
219
220
        if self.config["model_cls"] != "wan2.2":
            images = vae_to_comfyui_image(images)
PengGao's avatar
PengGao committed
221
222
223
224
225
226
227
228
229
230

        if "video_frame_interpolation" in self.config:
            assert self.vfi_model is not None and self.config["video_frame_interpolation"].get("target_fps", None) is not None
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            images = self.vfi_model.interpolate_frames(
                images,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
PengGao's avatar
PengGao committed
231

232
        if save_video:
PengGao's avatar
PengGao committed
233
234
235
236
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
helloyongyang's avatar
helloyongyang committed
237

238
            if not dist.is_initialized() or dist.get_rank() == 0:
helloyongyang's avatar
helloyongyang committed
239
                logger.info(f"Saving video to {self.config.save_video_path}")
240
241
242
243
244

                if self.config["model_cls"] != "wan2.2":
                    save_to_video(images, self.config.save_video_path, fps=fps, method="ffmpeg")  # type: ignore
                else:
                    cache_video(tensor=images, save_file=self.config.save_video_path, fps=fps, nrow=1, normalize=True, value_range=(-1, 1))
PengGao's avatar
PengGao committed
245

246
247
248
        del latents, generator
        torch.cuda.empty_cache()
        gc.collect()
PengGao's avatar
PengGao committed
249

250
251
        # Return (images, audio) - audio is None for default runner
        return images, None