default_runner.py 10.7 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import gc
PengGao's avatar
PengGao committed
2
3
4

from PIL import Image
from loguru import logger
5
6
import requests
from requests.exceptions import RequestException
helloyongyang's avatar
helloyongyang committed
7
8
import torch
import torch.distributed as dist
PengGao's avatar
PengGao committed
9

helloyongyang's avatar
helloyongyang committed
10
from lightx2v.utils.envs import *
PengGao's avatar
PengGao committed
11
12
13
14
from lightx2v.utils.generate_task_id import generate_task_id
from lightx2v.utils.profiler import ProfilingContext, ProfilingContext4Debug
from lightx2v.utils.utils import save_to_video, vae_to_comfyui_image

PengGao's avatar
PengGao committed
15
from .base_runner import BaseRunner
16
17


PengGao's avatar
PengGao committed
18
class DefaultRunner(BaseRunner):
helloyongyang's avatar
helloyongyang committed
19
    def __init__(self, config):
PengGao's avatar
PengGao committed
20
        super().__init__(config)
21
        self.has_prompt_enhancer = False
PengGao's avatar
PengGao committed
22
        self.progress_callback = None
23
24
25
26
27
        if self.config["task"] == "t2v" and self.config.get("sub_servers", {}).get("prompt_enhancer") is not None:
            self.has_prompt_enhancer = True
            if not self.check_sub_servers("prompt_enhancer"):
                self.has_prompt_enhancer = False
                logger.warning("No prompt enhancer server available, disable prompt enhancer.")
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
28
29
30
        if not self.has_prompt_enhancer:
            self.config["use_prompt_enhancer"] = False
        self.set_init_device()
31

32
    def init_modules(self):
gushiqiao's avatar
gushiqiao committed
33
        logger.info("Initializing runner modules...")
34
35
36
37
38
39
        if not self.config.get("lazy_load", False) and not self.config.get("unload_modules", False):
            self.load_model()
        self.run_dit = self._run_dit_local
        self.run_vae_decoder = self._run_vae_decoder_local
        if self.config["task"] == "i2v":
            self.run_input_encoder = self._run_input_encoder_local_i2v
40
        else:
41
            self.run_input_encoder = self._run_input_encoder_local_t2v
42

43
    def set_init_device(self):
44
45
46
47
        if self.config["parallel_attn_type"]:
            cur_rank = dist.get_rank()
            torch.cuda.set_device(cur_rank)
        if self.config.cpu_offload:
48
            self.init_device = torch.device("cpu")
49
        else:
50
            self.init_device = torch.device("cuda")
51

PengGao's avatar
PengGao committed
52
53
54
55
56
57
58
    def load_vfi_model(self):
        if self.config["video_frame_interpolation"].get("algo", None) == "rife":
            from lightx2v.models.vfi.rife.rife_comfyui_wrapper import RIFEWrapper

            logger.info("Loading RIFE model...")
            return RIFEWrapper(self.config["video_frame_interpolation"]["model_path"])
        else:
59
            raise ValueError(f"Unsupported VFI model: {self.config['video_frame_interpolation']['algo']}")
PengGao's avatar
PengGao committed
60

61
62
    @ProfilingContext("Load models")
    def load_model(self):
63
64
65
66
        self.model = self.load_transformer()
        self.text_encoders = self.load_text_encoder()
        self.image_encoder = self.load_image_encoder()
        self.vae_encoder, self.vae_decoder = self.load_vae()
PengGao's avatar
PengGao committed
67
        self.vfi_model = self.load_vfi_model() if "video_frame_interpolation" in self.config else None
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    def check_sub_servers(self, task_type):
        urls = self.config.get("sub_servers", {}).get(task_type, [])
        available_servers = []
        for url in urls:
            try:
                status_url = f"{url}/v1/local/{task_type}/generate/service_status"
                response = requests.get(status_url, timeout=2)
                if response.status_code == 200:
                    available_servers.append(url)
                else:
                    logger.warning(f"Service {url} returned status code {response.status_code}")

            except RequestException as e:
                logger.warning(f"Failed to connect to {url}: {str(e)}")
                continue
        logger.info(f"{task_type} available servers: {available_servers}")
        self.config["sub_servers"][task_type] = available_servers
        return len(available_servers) > 0

helloyongyang's avatar
helloyongyang committed
88
89
    def set_inputs(self, inputs):
        self.config["prompt"] = inputs.get("prompt", "")
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
90
        self.config["use_prompt_enhancer"] = False
91
        if self.has_prompt_enhancer:
92
            self.config["use_prompt_enhancer"] = inputs.get("use_prompt_enhancer", False)  # Reset use_prompt_enhancer from clinet side.
helloyongyang's avatar
helloyongyang committed
93
94
95
        self.config["negative_prompt"] = inputs.get("negative_prompt", "")
        self.config["image_path"] = inputs.get("image_path", "")
        self.config["save_video_path"] = inputs.get("save_video_path", "")
PengGao's avatar
PengGao committed
96
97
98
99
100
101
102
103
        self.config["infer_steps"] = inputs.get("infer_steps", self.config.get("infer_steps", 5))
        self.config["target_video_length"] = inputs.get("target_video_length", self.config.get("target_video_length", 81))
        self.config["seed"] = inputs.get("seed", self.config.get("seed", 42))
        self.config["audio_path"] = inputs.get("audio_path", "")  # for wan-audio
        self.config["video_duration"] = inputs.get("video_duration", 5)  # for wan-audio

        # self.config["sample_shift"] = inputs.get("sample_shift", self.config.get("sample_shift", 5))
        # self.config["sample_guide_scale"] = inputs.get("sample_guide_scale", self.config.get("sample_guide_scale", 5))
helloyongyang's avatar
helloyongyang committed
104

PengGao's avatar
PengGao committed
105
106
107
    def set_progress_callback(self, callback):
        self.progress_callback = callback

108
    def run(self):
PengGao's avatar
PengGao committed
109
110
111
        total_steps = self.model.scheduler.infer_steps
        for step_index in range(total_steps):
            logger.info(f"==> step_index: {step_index + 1} / {total_steps}")
112
113
114
115
116
117
118
119
120
121

            with ProfilingContext4Debug("step_pre"):
                self.model.scheduler.step_pre(step_index=step_index)

            with ProfilingContext4Debug("infer"):
                self.model.infer(self.inputs)

            with ProfilingContext4Debug("step_post"):
                self.model.scheduler.step_post()

PengGao's avatar
PengGao committed
122
123
124
            if self.progress_callback:
                self.progress_callback(step_index + 1, total_steps)

125
126
        return self.model.scheduler.latents, self.model.scheduler.generator

127
128
129
130
131
132
133
    def run_step(self, step_index=0):
        self.init_scheduler()
        self.inputs = self.run_input_encoder()
        self.model.scheduler.prepare(self.inputs["image_encoder_output"])
        self.model.scheduler.step_pre(step_index=step_index)
        self.model.infer(self.inputs)
        self.model.scheduler.step_post()
helloyongyang's avatar
helloyongyang committed
134
135

    def end_run(self):
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
136
137
        self.model.scheduler.clear()
        del self.inputs, self.model.scheduler
gushiqiao's avatar
gushiqiao committed
138
139
140
141
142
143
144
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            if hasattr(self.model.transformer_infer, "weights_stream_mgr"):
                self.model.transformer_infer.weights_stream_mgr.clear()
            if hasattr(self.model.transformer_weights, "clear"):
                self.model.transformer_weights.clear()
            self.model.pre_weight.clear()
            self.model.post_weight.clear()
145
            del self.model
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
146
        torch.cuda.empty_cache()
147
        gc.collect()
helloyongyang's avatar
helloyongyang committed
148

149
    @ProfilingContext("Run Encoders")
PengGao's avatar
PengGao committed
150
    def _run_input_encoder_local_i2v(self):
151
152
153
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = Image.open(self.config["image_path"]).convert("RGB")
        clip_encoder_out = self.run_image_encoder(img)
helloyongyang's avatar
helloyongyang committed
154
        vae_encode_out = self.run_vae_encoder(img)
155
        text_encoder_output = self.run_text_encoder(prompt, img)
156
157
        torch.cuda.empty_cache()
        gc.collect()
158
159
160
        return self.get_encoder_output_i2v(clip_encoder_out, vae_encode_out, text_encoder_output, img)

    @ProfilingContext("Run Encoders")
PengGao's avatar
PengGao committed
161
    def _run_input_encoder_local_t2v(self):
162
163
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        text_encoder_output = self.run_text_encoder(prompt, None)
164
165
        torch.cuda.empty_cache()
        gc.collect()
166
167
168
169
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": None,
        }
170
171

    @ProfilingContext("Run DiT")
helloyongyang's avatar
helloyongyang committed
172
    def _run_dit_local(self):
gushiqiao's avatar
gushiqiao committed
173
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
174
            self.model = self.load_transformer()
175
176
177
178
179
180
181
        self.init_scheduler()
        self.model.scheduler.prepare(self.inputs["image_encoder_output"])
        latents, generator = self.run()
        self.end_run()
        return latents, generator

    @ProfilingContext("Run VAE Decoder")
PengGao's avatar
PengGao committed
182
    def _run_vae_decoder_local(self, latents, generator):
gushiqiao's avatar
gushiqiao committed
183
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
184
            self.vae_decoder = self.load_vae_decoder()
185
        images = self.vae_decoder.decode(latents, generator=generator, config=self.config)
gushiqiao's avatar
gushiqiao committed
186
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
gushiqiao's avatar
gushiqiao committed
187
            del self.vae_decoder
188
189
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
190
191
        return images

192
193
194
195
196
    def post_prompt_enhancer(self):
        while True:
            for url in self.config["sub_servers"]["prompt_enhancer"]:
                response = requests.get(f"{url}/v1/local/prompt_enhancer/generate/service_status").json()
                if response["service_status"] == "idle":
197
198
199
200
201
202
203
                    response = requests.post(
                        f"{url}/v1/local/prompt_enhancer/generate",
                        json={
                            "task_id": generate_task_id(),
                            "prompt": self.config["prompt"],
                        },
                    )
204
205
206
207
                    enhanced_prompt = response.json()["output"]
                    logger.info(f"Enhanced prompt: {enhanced_prompt}")
                    return enhanced_prompt

208
209
210
    def run_pipeline(self, save_video=True):
        if self.config["use_prompt_enhancer"]:
            self.config["prompt_enhanced"] = self.post_prompt_enhancer()
PengGao's avatar
PengGao committed
211

212
        self.inputs = self.run_input_encoder()
PengGao's avatar
PengGao committed
213

helloyongyang's avatar
helloyongyang committed
214
        self.set_target_shape()
PengGao's avatar
PengGao committed
215

helloyongyang's avatar
helloyongyang committed
216
        latents, generator = self.run_dit()
PengGao's avatar
PengGao committed
217

218
        images = self.run_vae_decoder(latents, generator)
PengGao's avatar
PengGao committed
219
220
221
222
223
224
225
226
227
228
229
        images = vae_to_comfyui_image(images)

        if "video_frame_interpolation" in self.config:
            assert self.vfi_model is not None and self.config["video_frame_interpolation"].get("target_fps", None) is not None
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            images = self.vfi_model.interpolate_frames(
                images,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
PengGao's avatar
PengGao committed
230

231
        if save_video:
PengGao's avatar
PengGao committed
232
233
234
235
236
237
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
            logger.info(f"Saving video to {self.config.save_video_path}")
            save_to_video(images, self.config.save_video_path, fps=fps, method="ffmpeg")  # type: ignore
PengGao's avatar
PengGao committed
238

239
240
241
        del latents, generator
        torch.cuda.empty_cache()
        gc.collect()
PengGao's avatar
PengGao committed
242

243
        return images