mm_weight.py 56.9 KB
Newer Older
1
import os
2
import re
helloyongyang's avatar
helloyongyang committed
3
from abc import ABCMeta, abstractmethod
PengGao's avatar
PengGao committed
4
5

import torch
6
from safetensors import safe_open
Dongz's avatar
Dongz committed
7

PengGao's avatar
PengGao committed
8
from lightx2v.utils.envs import *
yihuiwen's avatar
yihuiwen committed
9
10
from lightx2v.utils.ggml_tensor import GGMLTensor
from lightx2v.utils.ggml_tensor import dequantize_tensor as gguf_dequantize_tensor
11
from lightx2v.utils.global_paras import CALIB
PengGao's avatar
PengGao committed
12
13
from lightx2v.utils.quant_utils import FloatQuantizer, IntegerQuantizer
from lightx2v.utils.registry_factory import MM_WEIGHT_REGISTER
14
from lightx2v_platform.base.global_var import AI_DEVICE
PengGao's avatar
PengGao committed
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
try:
    from lightx2v_kernel.gemm import (
        cutlass_scaled_mxfp4_mm,
        cutlass_scaled_mxfp6_mxfp8_mm,
        cutlass_scaled_mxfp8_mm,
        cutlass_scaled_nvfp4_mm,
        scaled_mxfp4_quant,
        scaled_mxfp6_quant,
        scaled_mxfp8_quant,
        scaled_nvfp4_quant,
    )
except ImportError:
    scaled_nvfp4_quant, cutlass_scaled_nvfp4_mm = None, None
    scaled_mxfp4_quant, cutlass_scaled_mxfp4_mm = None, None
    scaled_mxfp6_quant, cutlass_scaled_mxfp6_mxfp8_mm = None, None
    scaled_mxfp8_quant, cutlass_scaled_mxfp8_mm = None, None

gushiqiao's avatar
gushiqiao committed
33
34
35
36
37
38
39
40
41
42
try:
    from vllm import _custom_ops as ops
except ImportError:
    ops = None

try:
    import sgl_kernel
except ImportError:
    sgl_kernel = None

43
try:
gushiqiao's avatar
gushiqiao committed
44
    from q8_kernels.functional.linear import q8_linear
45
except ImportError:
gushiqiao's avatar
gushiqiao committed
46
47
48
49
50
51
    q8_linear = None

try:
    from q8_kernels.functional.linear import fp8_linear
except ImportError:
    fp8_linear = None
helloyongyang's avatar
helloyongyang committed
52

53
54
55
56
57
try:
    import deep_gemm
except ImportError:
    deep_gemm = None

gushiqiao's avatar
gushiqiao committed
58
try:
Wq-dd's avatar
Wq-dd committed
59
    from torchao.quantization.utils import quant_int8_per_token_matmul, quantize_activation_per_token_absmax
60
except ImportError:
gushiqiao's avatar
gushiqiao committed
61
62
    quant_int8_per_token_matmul, quantize_activation_per_token_absmax = None, None

63
64
65
66
67
try:
    import gguf
except ImportError:
    gguf = None

68
69
try:
    import marlin_cuda_quant
70
except ImportError:
71
    marlin_cuda_quant = None
helloyongyang's avatar
helloyongyang committed
72

73

helloyongyang's avatar
helloyongyang committed
74
class MMWeightTemplate(metaclass=ABCMeta):
75
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
helloyongyang's avatar
helloyongyang committed
76
77
        self.weight_name = weight_name
        self.bias_name = bias_name
78
        self.create_cuda_buffer = create_cuda_buffer
79
        self.create_cpu_buffer = create_cpu_buffer
gushiqiao's avatar
fix.  
gushiqiao committed
80
81
        self.lazy_load = lazy_load
        self.lazy_load_file = lazy_load_file
82
        self.is_post_adapter = is_post_adapter
helloyongyang's avatar
helloyongyang committed
83
84
85
86
87
88
89
        self.config = {}

    @abstractmethod
    def load(self, weight_dict):
        pass

    @abstractmethod
90
    def apply(self):
helloyongyang's avatar
helloyongyang committed
91
92
        pass

93
94
    def set_config(self, config={}):
        self.config = config
helloyongyang's avatar
helloyongyang committed
95

gushiqiao's avatar
gushiqiao committed
96
    def to_cuda(self, non_blocking=False):
97
        self.weight = self.pin_weight.to(AI_DEVICE, non_blocking=non_blocking)
gushiqiao's avatar
gushiqiao committed
98
        if hasattr(self, "pin_weight_scale"):
99
            self.weight_scale = self.pin_weight_scale.to(AI_DEVICE, non_blocking=non_blocking)
gushiqiao's avatar
gushiqiao committed
100
        if hasattr(self, "pin_bias") and self.pin_bias is not None:
101
            self.bias = self.pin_bias.to(AI_DEVICE, non_blocking=non_blocking)
gushiqiao's avatar
gushiqiao committed
102

103
    def to_cpu(self, non_blocking=False):
gushiqiao's avatar
gushiqiao committed
104
105
106
107
108
109
110
111
112
113
114
115
        if hasattr(self, "pin_weight"):
            self.weight = self.pin_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
            if hasattr(self, "weight_scale_name"):
                self.weight_scale = self.pin_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu()
            if self.bias is not None:
                self.bias = self.pin_bias.copy_(self.bias, non_blocking=non_blocking).cpu()
        else:
            self.weight = self.weight.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "weight_scale"):
                self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to("cpu", non_blocking=non_blocking)
116

helloyongyang's avatar
helloyongyang committed
117

Dongz's avatar
Dongz committed
118
@MM_WEIGHT_REGISTER("Default")
helloyongyang's avatar
helloyongyang committed
119
class MMWeight(MMWeightTemplate):
120
121
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
helloyongyang's avatar
helloyongyang committed
122
123

    def load(self, weight_dict):
124
        if self.create_cuda_buffer:
125
126
127
128
129
130
131
132
            self._load_cuda_buffers(weight_dict)
        elif self.create_cpu_buffer:
            self._load_cpu_pin_buffers()
        else:
            self._load_default_tensors(weight_dict)

    def _get_source_tensor(self, source_name, weight_dict=None):
        if self.lazy_load:
133
134
135
            lazy_load_file_path = os.path.join(self.lazy_load_file, f"block_{source_name.split('.')[1]}.safetensors")
            with safe_open(lazy_load_file_path, framework="pt", device="cpu") as lazy_load_file:
                return lazy_load_file.get_tensor(source_name)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        return weight_dict[source_name]

    def _create_pin_tensor(self, tensor, transpose=False):
        pin_tensor = torch.empty(tensor.shape, pin_memory=True, dtype=tensor.dtype)
        pin_tensor = pin_tensor.copy_(tensor)
        if transpose:
            pin_tensor = pin_tensor.t()
        del tensor
        return pin_tensor

    def _load_cuda_buffers(self, weight_dict):
        self.weight_cuda_buffer = self._get_source_tensor(self.weight_name, weight_dict).t().to(AI_DEVICE)
        if self.bias_name is not None:
            self.bias_cuda_buffer = self._get_source_tensor(self.bias_name, weight_dict).to(AI_DEVICE)

    def _load_cpu_pin_buffers(self):
152
153
154
155
156
        if self.lazy_load:
            lazy_load_file_path = os.path.join(self.lazy_load_file, f"block_{self.weight_name.split('.')[1]}.safetensors")
            with safe_open(lazy_load_file_path, framework="pt", device="cpu") as lazy_load_file:
                weight_tensor = lazy_load_file.get_tensor(self.weight_name)
                self.pin_weight = self._create_pin_tensor(weight_tensor, transpose=True)
157

158
159
160
161
162
163
                if self.bias_name is not None:
                    bias_tensor = lazy_load_file.get_tensor(self.bias_name)
                    self.pin_bias = self._create_pin_tensor(bias_tensor)
                else:
                    self.bias = None
                    self.pin_bias = None
164
165
166

    def _load_default_tensors(self, weight_dict):
        if not self.lazy_load:
167
            device = weight_dict[self.weight_name].device
168
            if device.type == "cpu":
169
170
                weight_tensor = weight_dict[self.weight_name]
                self.pin_weight = self._create_pin_tensor(weight_tensor, transpose=True)
171
172

                if self.bias_name is not None:
173
174
                    bias_tensor = weight_dict[self.bias_name]
                    self.pin_bias = self._create_pin_tensor(bias_tensor)
175
176
177
178
                else:
                    self.bias = None
                    self.pin_bias = None
                del weight_dict[self.weight_name]
179
            else:
180
                self.weight = weight_dict[self.weight_name].t()
181
                self.bias = weight_dict[self.bias_name] if self.bias_name is not None else None
182

helloyongyang's avatar
helloyongyang committed
183
184
185
186
187
188
189
190
191
    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)

helloyongyang's avatar
helloyongyang committed
192
193
194
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
195
196
197
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias
helloyongyang's avatar
helloyongyang committed
198
199
        return destination

200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def load_state_dict_from_disk(self, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            assert adapter_block_index is not None
            self.weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
        else:
            self.weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)

        if self.bias_name is not None:
            if self.is_post_adapter:
                assert adapter_block_index is not None
                self.bias_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.bias_name, count=1)
            else:
                self.bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)

214
215
216
217
218
219
220
221
222
223
        lazy_load_file_path = os.path.join(self.lazy_load_file, f"block_{block_index}.safetensors")
        with safe_open(lazy_load_file_path, framework="pt", device="cpu") as lazy_load_file:
            weight_tensor = lazy_load_file.get_tensor(self.weight_name).t()
            self.pin_weight = self.pin_weight.copy_(weight_tensor)
            del weight_tensor

            if self.bias_name is not None:
                bias_tensor = lazy_load_file.get_tensor(self.bias_name)
                self.pin_bias.copy_(bias_tensor)
                del bias_tensor
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            assert adapter_block_index is not None
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)

        if self.bias_name is not None:
            if self.is_post_adapter:
                assert adapter_block_index is not None
                bias_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.bias_name, count=1)
            else:
                bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

helloyongyang's avatar
helloyongyang committed
248

Dongz's avatar
Dongz committed
249
@MM_WEIGHT_REGISTER("Default-Force-FP32")
250
class MMWeightForceFP32(MMWeight):
251
252
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
helloyongyang's avatar
helloyongyang committed
253
254

    def load(self, weight_dict):
255
256
257
258
259
        if not self.lazy_load:
            super().load(weight_dict)
            self.weight = self.weight.to(torch.float32)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to(torch.float32)
helloyongyang's avatar
helloyongyang committed
260
261


262
class MMWeightQuantTemplate(MMWeightTemplate):
263
264
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
265
        self.weight_scale_name = self.weight_name.removesuffix(".weight") + ".weight_scale"
266
267
268
        self.load_func = None
        self.weight_need_transpose = True
        self.act_quant_func = None
269
270
        self.lazy_load = lazy_load
        self.lazy_load_file = lazy_load_file
271
        self.infer_dtype = GET_DTYPE()
272
        self.bias_force_fp32 = False
273

helloyongyang's avatar
helloyongyang committed
274
275
276
    # =========================
    # weight load functions
    # =========================
277
278
279
280
281
282
283
284
285
    def load(self, weight_dict):
        self.load_quantized(weight_dict)
        if self.weight_need_transpose:
            if hasattr(self, "weight") and self.weight is not None:
                self.weight = self.weight.t()
            if hasattr(self, "pin_weight") and self.pin_weight is not None:
                self.pin_weight = self.pin_weight.t()
            if hasattr(self, "weight_cuda_buffer") and self.weight_cuda_buffer is not None:
                self.weight_cuda_buffer = self.weight_cuda_buffer.t()
286

287
288
289
290
291
    def load_quantized(self, weight_dict):
        if self.create_cuda_buffer:
            self._load_cuda_buffers(weight_dict)
        elif self.create_cpu_buffer:
            self._load_cpu_pin_buffers()
292
        else:
293
            self._load_default_tensors(weight_dict)
294

295
    def _load_cuda_buffers(self, weight_dict):
296
297
298
299
300
301
302
303
304
        if self.lazy_load:
            lazy_load_file_path = os.path.join(self.lazy_load_file, f"block_{self.weight_name.split('.')[1]}.safetensors")
            with safe_open(lazy_load_file_path, framework="pt", device="cpu") as source:
                self.weight_cuda_buffer, self.weight_scale_cuda_buffer = self._get_cuda_tensor_pair(source, self.lazy_load)
                self.bias_cuda_buffer = self._get_cuda_bias_tensor(source, self.lazy_load)
        else:
            source = weight_dict
            self.weight_cuda_buffer, self.weight_scale_cuda_buffer = self._get_cuda_tensor_pair(source, self.lazy_load)
            self.bias_cuda_buffer = self._get_cuda_bias_tensor(source, self.lazy_load)
305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def _get_cuda_tensor_pair(self, source, is_lazy):
        if is_lazy:
            weight = source.get_tensor(self.weight_name).to(AI_DEVICE)
            scale = source.get_tensor(self.weight_scale_name).float().to(AI_DEVICE)
        else:
            weight = source[self.weight_name].to(AI_DEVICE)
            scale = source[self.weight_scale_name].float().to(AI_DEVICE)
        return weight, scale

    def _get_cuda_bias_tensor(self, source, is_lazy):
        if self.bias_name is None:
            return None
        if is_lazy:
            bias = source.get_tensor(self.bias_name)
            dtype = self.infer_dtype
        else:
            bias = source[self.bias_name]
            dtype = bias.dtype
        if self.bias_force_fp32:
            bias = bias.to(torch.float32)
        else:
            bias = bias.to(dtype)
        return bias.to(AI_DEVICE)

    def _load_cpu_pin_buffers(self):
        self.pin_weight, self.pin_weight_scale = self._get_cpu_pin_tensor_pair(self.lazy_load_file, is_lazy=True)
        self.pin_bias = self._get_cpu_pin_bias_tensor(self.lazy_load_file, is_lazy=True)
        self.bias = None

    def _get_cpu_pin_tensor_pair(self, source, is_lazy):
        if is_lazy:
337
338
339
340
341
342
343
            lazy_load_file_path = os.path.join(self.lazy_load_file, f"block_{self.weight_name.split('.')[1]}.safetensors")
            with safe_open(lazy_load_file_path, framework="pt", device="cpu") as source:
                weight_tensor = source.get_tensor(self.weight_name)
                scale_tensor = source.get_tensor(self.weight_scale_name)
                scale_dtype = torch.float
                pin_weight = self._create_pin_tensor(weight_tensor)
                pin_scale = self._create_pin_tensor(scale_tensor, scale_dtype)
344
345
346
347
        else:
            weight_tensor = source[self.weight_name]
            scale_tensor = source[self.weight_scale_name]
            scale_dtype = torch.float
348
349
            pin_weight = self._create_pin_tensor(weight_tensor)
            pin_scale = self._create_pin_tensor(scale_tensor, scale_dtype)
350
351
352
353
354
355
        return pin_weight, pin_scale

    def _get_cpu_pin_bias_tensor(self, source, is_lazy):
        if self.bias_name is None:
            return None
        if is_lazy:
356
357
358
359
360
361
362
363
            lazy_load_file_path = os.path.join(self.lazy_load_file, f"block_{self.weight_name.split('.')[1]}.safetensors")
            with safe_open(lazy_load_file_path, framework="pt", device="cpu") as source:
                bias_tensor = source.get_tensor(self.bias_name)
                if not self.bias_force_fp32:
                    bias_tensor = bias_tensor.to(self.infer_dtype)
                if self.bias_force_fp32:
                    bias_tensor = bias_tensor.to(torch.float32)
                return self._create_pin_tensor(bias_tensor)
364
365
        else:
            bias_tensor = source[self.bias_name]
366
367
368
            if self.bias_force_fp32:
                bias_tensor = bias_tensor.to(torch.float32)
            return self._create_pin_tensor(bias_tensor)
369
370
371
372
373
374
375
376
377

    def _create_pin_tensor(self, tensor, dtype=None):
        dtype = dtype or tensor.dtype
        pin_tensor = torch.empty(tensor.shape, pin_memory=True, dtype=dtype)
        pin_tensor.copy_(tensor)
        del tensor
        return pin_tensor

    def _load_default_tensors(self, weight_dict):
378
        if not self.lazy_load:
379
380
381
382
383
            self.weight, self.weight_scale, self.pin_weight, self.pin_weight_scale = self._get_device_tensor_pair(weight_dict)
            self._load_default_bias(weight_dict)
        else:
            self.bias = None
            self.pin_bias = None
384

385
386
387
388
389
    def _get_device_tensor_pair(self, source):
        device = source[self.weight_name].device
        if device.type == "cpu":
            pin_weight, pin_scale = self._get_cpu_pin_tensor_pair(source, is_lazy=False)
            return None, None, pin_weight, pin_scale
390
        else:
391
            return source[self.weight_name], source[self.weight_scale_name].float(), None, None
392

393
394
395
396
397
398
    def _load_default_bias(self, source):
        if self.bias_name is None:
            self.bias = None
            self.pin_bias = None
            self.bias_cuda_buffer = None
            return
399

400
401
        if self.create_cuda_buffer:
            self.bias_cuda_buffer = self._get_cuda_bias_tensor(source, is_lazy=False)
402
403
            self.bias = None
            self.pin_bias = None
404
405
406
407
408
409
410
411
412
        else:
            bias_tensor = source[self.bias_name].float() if self.bias_force_fp32 else source[self.bias_name]
            device = bias_tensor.device
            if device.type == "cpu":
                self.pin_bias = self._get_cpu_pin_bias_tensor(source, is_lazy=False)
                self.bias = None
            else:
                self.bias = bias_tensor
                self.pin_bias = None
413
414

    def load_fp8_perchannel_sym(self, weight_dict):
415
        if self.config.get("weight_auto_quant", False):
416
            self.weight = weight_dict[self.weight_name].to(torch.float32)
417
418
419
420
421
422
            w_quantizer = FloatQuantizer("e4m3", True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.float8_e4m3fn)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
423

424
    def load_int8_perchannel_sym(self, weight_dict):
425
        if self.config.get("weight_auto_quant", False):
426
            self.weight = weight_dict[self.weight_name].to(torch.float32)
427
428
429
430
431
432
            w_quantizer = IntegerQuantizer(8, True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.int8)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
433

434
435
436
    def load_mxfp4(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
437
            self.weight = weight_dict[self.weight_name].to(AI_DEVICE).to(torch.bfloat16)
438
439
440
441
            self.weight, self.weight_scale = scaled_mxfp4_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
442
            if device.type == "cpu":
443
444
445
446
447
448
449
450
451
452
453
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
454
455
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
456
457
458
459

    def load_mxfp6(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
460
            self.weight = weight_dict[self.weight_name].to(AI_DEVICE).to(torch.bfloat16)
461
462
463
464
            self.weight, self.weight_scale = scaled_mxfp6_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
465
            if device.type == "cpu":
466
467
468
469
470
471
472
473
474
475
476
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
477
478
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
479
480
481
482

    def load_mxfp8(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
483
            self.weight = weight_dict[self.weight_name].to(AI_DEVICE).to(torch.bfloat16)
484
485
486
487
            self.weight, self.weight_scale = scaled_mxfp8_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
488
            if device.type == "cpu":
489
490
491
492
493
494
495
496
497
498
499
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
500
501
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
502
503
504
505
506
507
508
509
510

    def load_nvfp4(self, weight_dict):
        device = weight_dict[self.weight_name].device

        input_absmax = weight_dict[self.weight_name.replace(".weight", ".input_absmax")]
        input_global_scale = (2688.0 / input_absmax).to(torch.float32)
        weight_global_scale = weight_dict[f"{self.weight_name}_global_scale"]
        alpha = 1.0 / (input_global_scale * weight_global_scale)

511
        if device.type == "cpu":
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
            weight_shape = weight_dict[self.weight_name].shape
            weight_dtype = weight_dict[self.weight_name].dtype
            self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
            self.pin_weight.copy_(weight_dict[self.weight_name])

            weight_scale_shape = weight_dict[self.weight_scale_name].shape
            weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
            self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
            self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])

            input_global_scale_shape = input_global_scale.shape
            input_global_scale_dtype = input_global_scale.dtype
            self.pin_input_global_scale = torch.empty(input_global_scale_shape, pin_memory=True, dtype=input_global_scale_dtype)
            self.pin_input_global_scale.copy_(input_global_scale)

            alpha_shape = alpha.shape
            alpha_dtype = alpha.dtype
            self.pin_alpha = torch.empty(alpha_shape, pin_memory=True, dtype=alpha_dtype)
            self.pin_alpha.copy_(alpha)

            del weight_dict[self.weight_name]
        else:
534
535
536
537
            self.weight = weight_dict[self.weight_name]
            self.weight_scale = weight_dict[self.weight_scale_name]
            self.input_global_scale = input_global_scale
            self.alpha = alpha
538

Gu Shiqiao's avatar
Gu Shiqiao committed
539
540
        if self.bias_name is not None:
            if self.create_cuda_buffer:
541
                self.bias_cuda_buffer = weight_dict[self.bias_name].to(AI_DEVICE)
Gu Shiqiao's avatar
Gu Shiqiao committed
542
543
            else:
                device = weight_dict[self.bias_name].device
544
                if device.type == "cpu":
Gu Shiqiao's avatar
Gu Shiqiao committed
545
546
547
548
549
                    bias_shape = weight_dict[self.bias_name].shape
                    bias_dtype = weight_dict[self.bias_name].dtype
                    self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                    self.pin_bias.copy_(weight_dict[self.bias_name])
                else:
550
                    self.bias = weight_dict[self.bias_name]
Gu Shiqiao's avatar
Gu Shiqiao committed
551
552
553
554
        else:
            self.bias = None
            self.pin_bias = None

555
    def load_fp8_perblock128_sym(self, weight_dict):
556
        if self.config.get("weight_auto_quant", False):
557
            self.weight = weight_dict[self.weight_name]
558
559
560
            self.weight, self.weight_scale = self.per_block_cast_to_fp8(self.weight)
        else:
            self.load_quantized(weight_dict)
561

562
563
564
    def per_block_cast_to_fp8(self, x):
        assert x.dim() == 2
        m, n = x.shape
565
566
567
568
569
        x_padded = torch.zeros(
            (deep_gemm.ceil_div(m, 128) * 128, deep_gemm.ceil_div(n, 128) * 128),
            dtype=x.dtype,
            device=x.device,
        )
570
571
572
573
574
575
        x_padded[:m, :n] = x
        x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
        x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
        x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
        return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))

helloyongyang's avatar
helloyongyang committed
576
577
578
    # =========================
    # act quant kernels
    # =========================
gushiqiao's avatar
gushiqiao committed
579
580
581
    def act_quant_int8_perchannel_sym_torchao(self, x):
        input_tensor_quant, input_tensor_scale = quantize_activation_per_token_absmax(x)
        return input_tensor_quant, input_tensor_scale
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

    def act_quant_fp8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def act_quant_fp8_perchannel_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_int8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

598
599
600
601
602
603
604
605
606
607
608
609
    def act_quant_nvfp4(self, x):
        input_tensor_quant, input_tensor_scale = scaled_nvfp4_quant(x, self.input_global_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_mxfp4(self, x):
        input_tensor_quant, input_tensor_scale = scaled_mxfp4_quant(x)
        return input_tensor_quant, input_tensor_scale

    def act_quant_mxfp8(self, x):
        input_tensor_quant, input_tensor_scale = scaled_mxfp8_quant(x)
        return input_tensor_quant, input_tensor_scale

610
611
612
613
614
615
616
617
618
619
620
    def act_quant_fp8_perchannelgroup128_sym_deepgemm(self, x):
        assert x.dim() == 2 and x.size(1) % 128 == 0
        m, n = x.shape
        x_view = x.view(m, -1, 128)
        x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
        return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1)

    def act_quant_fp8_perchannelgroup128_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, k // 128), dtype=torch.float32, device="cuda", requires_grad=False)
621
622
623
624
625
626
627
628
629
        sgl_kernel.sgl_per_token_group_quant_fp8(
            x,
            input_tensor_quant,
            input_tensor_scale,
            group_size=128,
            eps=1e-10,
            fp8_min=-448.0,
            fp8_max=448.0,
        )
630
631
        return input_tensor_quant, input_tensor_scale

632
633
634
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
635
636
637
638
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias
        destination[self.weight_scale_name] = self.pin_weight_scale if hasattr(self, "pin_weight_scale") else self.weight_scale
639
640
        return destination

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
            weight_scale_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_scale_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)
            weight_scale_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_scale_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)
        self.weight_scale = self.weight_scale_cuda_buffer.copy_(destination[weight_scale_name], non_blocking=True)

        if self.bias_name is not None:
            bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    def load_state_dict_from_disk(self, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            self.weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
            self.weight_scale_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_scale_name, count=1)
        else:
            self.weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)
            self.weight_scale_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_scale_name, count=1)

        if self.bias_name is not None:
            if self.is_post_adapter:
                assert adapter_block_index is not None
                self.bias_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.bias_name, count=1)
            else:
                self.bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
        lazy_load_file_path = os.path.join(self.lazy_load_file, f"block_{block_index}.safetensors")
        with safe_open(lazy_load_file_path, framework="pt", device="cpu") as lazy_load_file:
            if self.weight_need_transpose:
                weight_tensor = lazy_load_file.get_tensor(self.weight_name).t()
            else:
                weight_tensor = lazy_load_file.get_tensor(self.weight_name)

            self.pin_weight = self.pin_weight.copy_(weight_tensor)
            del weight_tensor

            weight_scale_tensor = lazy_load_file.get_tensor(self.weight_scale_name)
            self.pin_weight_scale = self.pin_weight_scale.copy_(weight_scale_tensor)
            del weight_scale_tensor

            if self.bias_name is not None:
                bias_tensor = lazy_load_file.get_tensor(self.bias_name)
                self.pin_bias.copy_(bias_tensor)
                del bias_tensor
695

696

697
@MM_WEIGHT_REGISTER("fp8-vllm")
698
class MMWeightWfp8channelAfp8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
699
    """
helloyongyang's avatar
helloyongyang committed
700
701
702
703
704
705
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
706
707
    """

708
709
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
710
711
712
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
713
714
715
716
717
718

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
719
720

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
721
722
723
724
725
726
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
gushiqiao's avatar
gushiqiao committed
727
            self.bias if self.bias is not None else None,
728
        )
helloyongyang's avatar
helloyongyang committed
729
730
731
        return output_tensor


732
@MM_WEIGHT_REGISTER("int8-vllm")
733
class MMWeightWint8channelAint8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
734
    """
helloyongyang's avatar
helloyongyang committed
735
736
737
738
739
740
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
741
742
    """

743
744
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
745
746
747
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
748
749
750
751
752

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
753
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
754
755

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
756
757
758
759
760
761
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
gushiqiao's avatar
gushiqiao committed
762
            self.bias if self.bias is not None else None,
763
        )
helloyongyang's avatar
helloyongyang committed
764
765
766
        return output_tensor


767
768
769
770
771
772
773
774
775
776
@MM_WEIGHT_REGISTER("mxfp4")
class MMWeightWmxfp4Amxfp4dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp4-A-mxfp4-dynamic

    Quant MM:
        Weight: mxfp4
        Act: mxfp4
    """

777
778
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        self.load_func = self.load_mxfp4
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp4
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp4_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("mxfp6-mxfp8")
class MMWeightWmxfp6Amxfp8dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp6-A-nvfp8-dynamic

    Quant MM:
        Weight: mxfp6
        Act: mxfp8
    """

804
805
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
        self.load_func = self.load_mxfp6
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp8
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp6_mxfp8_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("mxfp8")
class MMWeightWmxfp8Amxfp8dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp8-A-nvfp8-dynamic

    Quant MM:
        Weight: mxfp8
        Act: mxfp8
    """

831
832
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
        self.load_func = self.load_mxfp8
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp8
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp8_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("nvfp4")
class MMWeightWnvfp4Anvfp4dynamic(MMWeightQuantTemplate):
    """
    Name: W-nvfp4-A-nvfp4-dynamic

    Quant MM:
        Weight: nvfp4
        Act: nvfp4
    """

858
859
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
860
861
862
863
864
865
866
867
868
869
        self.load_func = self.load_nvfp4
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_nvfp4

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = cutlass_scaled_nvfp4_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor

    def to_cuda(self, non_blocking=False):
870
        self.weight = self.pin_weight.to(AI_DEVICE, non_blocking=non_blocking)
871
        if hasattr(self, "pin_weight_scale"):
872
873
874
            self.weight_scale = self.pin_weight_scale.to(AI_DEVICE, non_blocking=non_blocking)
            self.input_global_scale = self.pin_input_global_scale.to(AI_DEVICE, non_blocking=non_blocking)
            self.alpha = self.pin_alpha.to(AI_DEVICE, non_blocking=non_blocking)
875
        if hasattr(self, "pin_bias") and self.pin_bias is not None:
876
            self.bias = self.pin_bias.to(AI_DEVICE, non_blocking=non_blocking)
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

    def to_cpu(self, non_blocking=False):
        if hasattr(self, "pin_weight"):
            self.weight = self.pin_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
            if hasattr(self, "weight_scale_name"):
                self.weight_scale = self.pin_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu()
                self.input_global_scale = self.pin_input_global_scale.copy_(self.input_global_scale, non_blocking=non_blocking).cpu()
                self.alpha = self.pin_alpha.copy_(self.alpha, non_blocking=non_blocking).cpu()
            if self.bias is not None:
                self.bias = self.pin_bias.copy_(self.bias, non_blocking=non_blocking).cpu()
        else:
            self.weight = self.weight.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "weight_scale"):
                self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
                self.input_global_scale = self.input_global_scale.to("cpu", non_blocking=non_blocking)
                self.alpha = self.alpha.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to("cpu", non_blocking=non_blocking)


@MM_WEIGHT_REGISTER("Calib")
class MMCalibNvfp4(MMWeight):
    """
    Name: calib

    Calib:
        absmax: torch.max(torch.abs(input_tensor))
    """

906
907
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
        self.running_absmax = None
        self.count = 0
        self.decay = 0.9

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype, device = input_tensor.dtype, input_tensor.device

        current_absmax = torch.max(torch.abs(input_tensor)).to("cpu")
        if self.count % 2 == 0:
            if self.running_absmax is None:
                self.running_absmax = current_absmax
            else:
                self.running_absmax = self.decay * self.running_absmax + (1 - self.decay) * current_absmax
            CALIB["absmax"][self.weight_name] = self.running_absmax
        self.count = self.count + 1

        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)


931
@MM_WEIGHT_REGISTER("fp8-q8f")
932
933
934
935
936
937
938
939
940
941
class MMWeightWfp8channelAfp8channeldynamicQ8F(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Q8F
    """

942
943
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
944
945
946
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm
947
        self.bias_force_fp32 = True
948
949
950

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
gushiqiao's avatar
gushiqiao committed
951
        output_tensor = fp8_linear(
952
953
            input_tensor_quant,
            self.weight,
gushiqiao's avatar
gushiqiao committed
954
            self.bias.float() if self.bias is not None else None,
955
956
            input_tensor_scale,
            self.weight_scale,
957
            out_dtype=self.infer_dtype,
958
        )
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
959
        return output_tensor.squeeze(0) if len(output_tensor.shape) == 3 else output_tensor
960
961


962
@MM_WEIGHT_REGISTER("int8-q8f")
963
class MMWeightWint8channelAint8channeldynamicQ8F(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
964
    """
965
966
967
968
969
970
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Q8F
Dongz's avatar
Dongz committed
971
972
    """

973
974
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
975
976
977
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
978

979
980
    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
gushiqiao's avatar
gushiqiao committed
981
        output_tensor = q8_linear(
982
983
            input_tensor_quant,
            self.weight,
gushiqiao's avatar
gushiqiao committed
984
            self.bias.float() if self.bias is not None else None,
985
986
987
            input_tensor_scale,
            self.weight_scale,
            fuse_gelu=False,
988
            out_dtype=self.infer_dtype,
989
        )
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
990
        return output_tensor.squeeze(0) if len(output_tensor.shape) == 3 else output_tensor
991
992


993
@MM_WEIGHT_REGISTER("fp8-b128-deepgemm")
994
995
996
997
998
999
1000
1001
1002
1003
class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemmActSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl

    Quant MM:
        Weight: fp8 perblock 128x128 sym
        Act: fp8 pertoken-pergroup group=128 dynamic sym
        Kernel: quant-mm using Deepgemm, act dynamic quant using Sgl-kernel
    """

1004
1005
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
        self.load_func = self.load_fp8_perblock128_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_sgl

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
1017
1018
1019
1020
1021
1022
        deep_gemm.gemm_fp8_fp8_bf16_nt(
            (input_tensor_quant, input_tensor_scale),
            (self.weight, self.weight_scale),
            output_tensor,
        )
        if hasattr(self, "bias") and self.bias is not None:
1023
1024
1025
1026
            output_tensor.add_(self.bias)
        return output_tensor


1027
@MM_WEIGHT_REGISTER("fp8-sgl")
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
class MMWeightWfp8channelAfp8channeldynamicSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Sgl-kernel
    """

1038
1039
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
1040
1041
1042
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl
1043
1044

    def apply(self, input_tensor):
1045
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
1046
1047
1048
1049
1050
        output_tensor = sgl_kernel.fp8_scaled_mm(
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
1051
            self.infer_dtype,
1052
            self.bias if self.bias is not None else None,
1053
        )
1054
1055
1056
        return output_tensor


1057
@MM_WEIGHT_REGISTER("int8-sgl")
helloyongyang's avatar
helloyongyang committed
1058
class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate):
1059
1060
1061
1062
1063
1064
1065
1066
1067
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm
    """

1068
1069
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
1081
1082
1083
1084
1085
        output_tensor = sgl_kernel.int8_scaled_mm(
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
1086
            self.infer_dtype,
gushiqiao's avatar
gushiqiao committed
1087
            self.bias if self.bias is not None else None,
1088
        )
1089
        return output_tensor
1090
1091


1092
@MM_WEIGHT_REGISTER("int8-torchao")
1093
class MMWeightWint8channelAint8channeldynamicTorchao(MMWeightQuantTemplate):
gushiqiao's avatar
gushiqiao committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Torchao

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Torchao
    """

1103
1104
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
gushiqiao's avatar
gushiqiao committed
1105
1106
1107
1108
1109
1110
1111
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_torchao

    def apply(self, input_tensor):
        input_tensor = input_tensor
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
1112
        output_tensor = quant_int8_per_token_matmul(input_tensor_quant, input_tensor_scale, self.weight, self.weight_scale.t().float(), output_dtype=self.infer_dtype)
gushiqiao's avatar
gushiqiao committed
1113
1114
1115
1116
1117
1118
        if self.bias is not None:
            output_tensor = output_tensor + self.bias

        return output_tensor


yihuiwen's avatar
yihuiwen committed
1119
class MMWeightGGUFTemplate(MMWeightTemplate):
1120
1121
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
1122

yihuiwen's avatar
yihuiwen committed
1123
    def load(self, weight_dict):
1124
1125
1126
        if not self.lazy_load:
            assert not self.create_cuda_buffer, "GGUF Unsupported offload block"
            self.weight = weight_dict[self.weight_name]
1127

1128
1129
            weight_shape = self.weight.shape
            weight_dtype = self.weight.dtype
1130

1131
1132
1133
1134
1135
1136
            if isinstance(self.weight, GGMLTensor):
                self.pin_weight = GGMLTensor.empty_pinned(weight_shape, orig_shape=self.weight.orig_shape, dtype=weight_dtype, gguf_type=self.weight.gguf_type)
                self.pin_weight.copy_from(self.weight)
            else:
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])
yihuiwen's avatar
yihuiwen committed
1137

1138
1139
1140
1141
1142
1143
1144
1145
            if self.bias_name is not None:
                self.bias = weight_dict[self.bias_name]
                if isinstance(self.bias, GGMLTensor):
                    self.pin_bias = GGMLTensor.empty_pinned(self.bias.shape, orig_shape=self.bias.orig_shape, dtype=self.bias.dtype, gguf_type=self.bias.gguf_type)
                    self.pin_bias.copy_from(self.bias)
                else:
                    self.pin_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype)
                    self.pin_bias.copy_(weight_dict[self.bias_name])
yihuiwen's avatar
yihuiwen committed
1146
            else:
1147
                self.bias = None
yihuiwen's avatar
yihuiwen committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            assert adapter_block_index is not None
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)

        if self.bias_name is not None:
            if self.is_post_adapter:
                assert adapter_block_index is not None
                bias_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.bias_name, count=1)
            else:
                bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias

        return destination

    def get_weight(self, tensor, dtype):
        if tensor is None:
            return

        weight = gguf_dequantize_tensor(tensor, dtype)
        if isinstance(weight, GGMLTensor):
            weight = torch.Tensor(weight)

        return weight

    def cast_bias_weight(self, input_tensor=None, dtype=None, device=None, bias_dtype=None):
        if input_tensor is not None:
            if dtype is None:
                dtype = getattr(input_tensor, "dtype", torch.float32)

        bias = None
        if self.bias is not None:
            bias = self.get_weight(self.bias, dtype)

        weight = self.get_weight(self.weight, dtype)
        return weight, bias

    def apply(self, input_tensor):
        weight, bias = self.cast_bias_weight(input_tensor)
        return torch.nn.functional.linear(input_tensor, weight, bias)


@MM_WEIGHT_REGISTER("gguf-BF16")
class MMWeightGGUFBF16(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.BF16


@MM_WEIGHT_REGISTER("gguf-Q8_0")
class MMWeightGGUFQ80(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q8_0


@MM_WEIGHT_REGISTER("gguf-Q6_K")
class MMWeightGGUFQ6K(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_K_S")
class MMWeightGGUFQ5KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_K_M")
class MMWeightGGUFQ5KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_1")
class MMWeightGGUFQ51(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_1


@MM_WEIGHT_REGISTER("gguf-Q5_0")
class MMWeightGGUFQ50(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_0


@MM_WEIGHT_REGISTER("gguf-Q4_K_M")
class MMWeightGGUFQ4KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_0


@MM_WEIGHT_REGISTER("gguf-Q4_K_S")
class MMWeightGGUFQ4KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_K


@MM_WEIGHT_REGISTER("gguf-Q4_1")
class MMWeightGGUFQ41(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_1


@MM_WEIGHT_REGISTER("gguf-Q4_0")
class MMWeightGGUFQ40(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_0


@MM_WEIGHT_REGISTER("gguf-Q3_K_M")
class MMWeightGGUFQ3KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q3_K


@MM_WEIGHT_REGISTER("gguf-Q3_K_S")
class MMWeightGGUFQ3KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q2_K
1271

1272

1273
@MM_WEIGHT_REGISTER("int4-g128-marlin")
1274
1275
1276
1277
1278
1279
1280
1281
class MMWeightWint4group128Marlin(MMWeightQuantTemplate):
    """
    Name: "W-int4-group128-sym-Marlin

    Quant int4 x FP16:
        Weight: int4 pergroup sym
        Kernel: Marlin
    """
1282

1283
1284
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, create_cpu_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, create_cpu_buffer, lazy_load, lazy_load_file, is_post_adapter)
1285
1286
1287
1288
1289
1290
        self.load_func = self.load_quantized

    def load(self, weight_dict):
        assert not self.lazy_load
        self.load_func(weight_dict)
        self.workspace = weight_dict[f"{self.weight_name}_workspace"]
gushiqiao's avatar
gushiqiao committed
1291

1292
        if self.bias_name is not None:
gushiqiao's avatar
gushiqiao committed
1293
1294
            bias_shape = weight_dict[self.bias_name].shape
            bias_dtype = weight_dict[self.bias_name].dtype
1295
1296
            self.bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
            self.bias.copy_(weight_dict[self.bias_name])
1297
1298
        else:
            self.bias = None
1299

1300
1301
1302
1303
1304
1305
    def apply(self, input_tensor):
        output_tensor = torch.empty(input_tensor.shape[:-1] + (self.weight_scale.shape[1],), dtype=input_tensor.dtype, device=input_tensor.device)
        marlin_cuda_quant.mul(input_tensor, self.weight, output_tensor, self.weight_scale.half(), self.workspace, -1, -1, -1, -1)
        if hasattr(self, "bias") and self.bias is not None:
            output_tensor.add_(self.bias)
        return output_tensor