mm_weight.py 18.6 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
import torch
from abc import ABCMeta, abstractmethod
from vllm import _custom_ops as ops
4
import sgl_kernel
helloyongyang's avatar
helloyongyang committed
5
6
from lightx2v.utils.registry_factory import MM_WEIGHT_REGISTER
from lightx2v.utils.quant_utils import IntegerQuantizer, FloatQuantizer
Dongz's avatar
Dongz committed
7

8
9
10
11
try:
    import q8_kernels.functional as Q8F
except ImportError:
    Q8F = None
helloyongyang's avatar
helloyongyang committed
12

13
14
15
16
17
try:
    import deep_gemm
except ImportError:
    deep_gemm = None

helloyongyang's avatar
helloyongyang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

class MMWeightTemplate(metaclass=ABCMeta):
    def __init__(self, weight_name, bias_name):
        self.weight_name = weight_name
        self.bias_name = bias_name
        self.config = {}

    @abstractmethod
    def load(self, weight_dict):
        pass

    @abstractmethod
    def apply(self, input_tensor):
        pass

    def set_config(self, config=None):
        if config is not None:
            self.config = config

gushiqiao's avatar
gushiqiao committed
37
38
39
40
41
42
43
44
45
46
    def to_cpu(self, non_blocking=False):
        self.weight = self.weight.to("cpu", non_blocking=non_blocking)
        if self.bias is not None:
            self.bias = self.bias.to("cpu", non_blocking=non_blocking)

    def to_cuda(self, non_blocking=False):
        self.weight = self.weight.cuda(non_blocking=non_blocking)
        if self.bias is not None:
            self.bias = self.bias.cuda(non_blocking=non_blocking)

helloyongyang's avatar
helloyongyang committed
47

Dongz's avatar
Dongz committed
48
@MM_WEIGHT_REGISTER("Default")
helloyongyang's avatar
helloyongyang committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class MMWeight(MMWeightTemplate):
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)

    def load(self, weight_dict):
        self.weight = weight_dict[self.weight_name].t().cuda()
        self.bias = weight_dict[self.bias_name].cuda() if self.bias_name is not None else None

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)


Dongz's avatar
Dongz committed
67
@MM_WEIGHT_REGISTER("Default-Force-FP32")
68
class MMWeightForceFP32(MMWeight):
helloyongyang's avatar
helloyongyang committed
69
70
71
72
73
74
75
76
77
78
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)

    def load(self, weight_dict):
        super().load(weight_dict)
        self.weight = self.weight.to(torch.float32)
        if self.bias is not None:
            self.bias = self.bias.to(torch.float32)


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class MMWeightQuantTemplate(MMWeightTemplate):
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = None
        self.weight_need_transpose = True
        self.act_quant_func = None

    """
    weight load functions
    """

    def load(self, weight_dict):
        self.load_func(weight_dict)
        if self.weight_need_transpose:
            self.weight = self.weight.t()

    def load_quantized(self, weight_dict):
        self.weight = weight_dict[self.weight_name].cuda()
        self.weight_scale = weight_dict[self.weight_name.rstrip(".weight") + ".weight_scale"].cuda()

    def load_fp8_perchannel_sym(self, weight_dict):
        if self.config.get("weight_auto_quant", True):
            self.weight = weight_dict[self.weight_name].to(torch.float32).cuda()
            w_quantizer = FloatQuantizer("e4m3", True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.float8_e4m3fn)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
        self.bias = weight_dict[self.bias_name].cuda() if self.bias_name is not None else None

    def load_int8_perchannel_sym(self, weight_dict):
        if self.config.get("weight_auto_quant", True):
            self.weight = weight_dict[self.weight_name].to(torch.float32)
            w_quantizer = IntegerQuantizer(8, True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.int8)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
        self.bias = weight_dict[self.bias_name].cuda() if self.bias_name is not None else None

    def load_fp8_perblock128_sym(self, weight_dict):
        if self.config.get("weight_auto_quant", True):
            self.weight = weight_dict[self.weight_name].cuda()
            self.weight, self.weight_scale = self.per_block_cast_to_fp8(self.weight)
        else:
            self.load_quantized(weight_dict)
        self.bias = weight_dict[self.bias_name].cuda() if self.bias_name is not None else None

    def per_block_cast_to_fp8(self, x):
        assert x.dim() == 2
        m, n = x.shape
        x_padded = torch.zeros((deep_gemm.ceil_div(m, 128) * 128, deep_gemm.ceil_div(n, 128) * 128), dtype=x.dtype, device=x.device)
        x_padded[:m, :n] = x
        x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
        x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
        x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
        return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))

    """
    act quant kernels
    """

    def act_quant_fp8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def act_quant_fp8_perchannel_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_int8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

    def act_quant_fp8_perchannelgroup128_sym_deepgemm(self, x):
        assert x.dim() == 2 and x.size(1) % 128 == 0
        m, n = x.shape
        x_view = x.view(m, -1, 128)
        x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
        return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1)

    def act_quant_fp8_perchannelgroup128_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, k // 128), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_group_quant_fp8(x, input_tensor_quant, input_tensor_scale, group_size=128, eps=1e-10, fp8_min=-448.0, fp8_max=448.0)
        return input_tensor_quant, input_tensor_scale


Dongz's avatar
Dongz committed
173
@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm")
174
class MMWeightWfp8channelAfp8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
175
    """
helloyongyang's avatar
helloyongyang committed
176
177
178
179
180
181
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
182
183
    """

helloyongyang's avatar
helloyongyang committed
184
185
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
186
187
188
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
189
190
191
192
193
194

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
195
196
197

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias)
helloyongyang's avatar
helloyongyang committed
198
199
200
        return output_tensor


Dongz's avatar
Dongz committed
201
@MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm")
202
class MMWeightWint8channelAint8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
203
    """
helloyongyang's avatar
helloyongyang committed
204
205
206
207
208
209
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
210
211
    """

helloyongyang's avatar
helloyongyang committed
212
213
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
214
215
216
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
217
218
219
220
221
222

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
223
224
225

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias)
helloyongyang's avatar
helloyongyang committed
226
227
228
        return output_tensor


229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F")
class MMWeightWfp8channelAfp8channeldynamicQ8F(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Q8F
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = Q8F.linear.fp8_linear(input_tensor_quant, self.weight, self.bias, input_tensor_scale, self.weight_scale, out_dtype=torch.bfloat16)
        return output_tensor.squeeze(0)


Dongz's avatar
Dongz committed
252
@MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F")
253
class MMWeightWint8channelAint8channeldynamicQ8F(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
254
    """
255
256
257
258
259
260
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Q8F
Dongz's avatar
Dongz committed
261
262
    """

263
264
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
265
266
267
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
268

269
270
271
    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = Q8F.linear.q8_linear(input_tensor_quant, self.weight, self.bias, input_tensor_scale, self.weight_scale, fuse_gelu=False, out_dtype=torch.bfloat16)
272
273
274
        return output_tensor.squeeze(0)


275
276
@MM_WEIGHT_REGISTER("W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm")
class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
277
    """
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm

    Quant MM:
        Weight: fp8 perblock 128x128 sym
        Act: fp8 perchannel-pergroup group=128 dynamic sym
        Kernel: Deepgemm

    Reference: https://github.com/deepseek-ai/DeepGEMM

    Example:
        Act(1024, 2048) x Weight(2048, 4096) = Out(1024, 4096)

        Act : torch.Size([1024, 2048]), torch.float8_e4m3fn
        Act Scale: torch.Size([1024, 16]), torch.float32
        Weight : torch.Size([4096, 2048]), torch.float8_e4m3fn
        Weight Scale: torch.Size([32, 16]), torch.float32
        Out : torch.Size([1024, 4096]), torch.bfloat16
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perblock128_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_deepgemm

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        deep_gemm.gemm_fp8_fp8_bf16_nt((input_tensor_quant, input_tensor_scale), (self.weight, self.weight_scale), output_tensor)
        if self.bias is not None:
            output_tensor.add_(self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl")
class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemmActSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl

    Quant MM:
        Weight: fp8 perblock 128x128 sym
        Act: fp8 pertoken-pergroup group=128 dynamic sym
        Kernel: quant-mm using Deepgemm, act dynamic quant using Sgl-kernel
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perblock128_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_sgl

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        deep_gemm.gemm_fp8_fp8_bf16_nt((input_tensor_quant, input_tensor_scale), (self.weight, self.weight_scale), output_tensor)
        if self.bias is not None:
            output_tensor.add_(self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm-ActSgl")
class MMWeightWfp8channelAfp8channeldynamicVllmActSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm-ActSgl
350
351
352
353

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
354
        Kernel: quant-mm using vllm, act dynamic quant using Sgl-kernel
Dongz's avatar
Dongz committed
355
356
    """

357
358
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
359
360
361
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl")
class MMWeightWfp8channelAfp8channeldynamicSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Sgl-kernel
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl
390
391

    def apply(self, input_tensor):
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = sgl_kernel.fp8_scaled_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, torch.bfloat16, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm")
class MMWeightWint8channelAint8channeldynamicActVllm(MMWeightQuantTemplate):
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = sgl_kernel.int8_scaled_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, torch.bfloat16, self.bias)
        return output_tensor
423
424


Dongz's avatar
Dongz committed
425
if __name__ == "__main__":
helloyongyang's avatar
helloyongyang committed
426
    weight_dict = {
Dongz's avatar
Dongz committed
427
428
429
        "xx.weight": torch.randn(8192, 4096).to(torch.float8_e4m3fn),
        "xx.bias": torch.randn(8192).to(torch.bfloat16),
        "xx.weight_scale": torch.randn(8192, 1).to(torch.float32),
helloyongyang's avatar
helloyongyang committed
430
431
    }

Dongz's avatar
Dongz committed
432
433
    mm_weight = MM_WEIGHT_REGISTER["W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias")
    mm_weight.set_config({"weight_auto_quant": False})
helloyongyang's avatar
helloyongyang committed
434
435
436
437
438
439
    mm_weight.load(weight_dict)
    input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda()
    output_tensor = mm_weight.apply(input_tensor)
    print(output_tensor.shape)

    weight_dict = {
Dongz's avatar
Dongz committed
440
441
        "xx.weight": torch.randn(8192, 4096),
        "xx.bias": torch.randn(8192).to(torch.bfloat16),
helloyongyang's avatar
helloyongyang committed
442
443
    }

Dongz's avatar
Dongz committed
444
445
    mm_weight = MM_WEIGHT_REGISTER["W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias")
    mm_weight.set_config({"weight_auto_quant": True})
helloyongyang's avatar
helloyongyang committed
446
447
448
449
450
451
    mm_weight.load(weight_dict)
    input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda()
    output_tensor = mm_weight.apply(input_tensor)
    print(output_tensor.shape)

    weight_dict = {
Dongz's avatar
Dongz committed
452
453
        "xx.weight": torch.randn(8192, 4096),
        "xx.bias": torch.randn(8192).to(torch.bfloat16),
helloyongyang's avatar
helloyongyang committed
454
455
    }

Dongz's avatar
Dongz committed
456
457
    mm_weight = MM_WEIGHT_REGISTER["W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias")
    mm_weight.set_config({"weight_auto_quant": True})
helloyongyang's avatar
helloyongyang committed
458
459
460
    mm_weight.load(weight_dict)
    input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda()
    output_tensor = mm_weight.apply(input_tensor)
Dongz's avatar
Dongz committed
461
    print(output_tensor.shape)