mm_weight.py 44 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
from abc import ABCMeta, abstractmethod
PengGao's avatar
PengGao committed
2
3

import torch
Dongz's avatar
Dongz committed
4

PengGao's avatar
PengGao committed
5
from lightx2v.utils.envs import *
6
from lightx2v.utils.global_paras import CALIB
PengGao's avatar
PengGao committed
7
8
9
from lightx2v.utils.quant_utils import FloatQuantizer, IntegerQuantizer
from lightx2v.utils.registry_factory import MM_WEIGHT_REGISTER

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
try:
    from lightx2v_kernel.gemm import (
        cutlass_scaled_mxfp4_mm,
        cutlass_scaled_mxfp6_mxfp8_mm,
        cutlass_scaled_mxfp8_mm,
        cutlass_scaled_nvfp4_mm,
        scaled_mxfp4_quant,
        scaled_mxfp6_quant,
        scaled_mxfp8_quant,
        scaled_nvfp4_quant,
    )
except ImportError:
    scaled_nvfp4_quant, cutlass_scaled_nvfp4_mm = None, None
    scaled_mxfp4_quant, cutlass_scaled_mxfp4_mm = None, None
    scaled_mxfp6_quant, cutlass_scaled_mxfp6_mxfp8_mm = None, None
    scaled_mxfp8_quant, cutlass_scaled_mxfp8_mm = None, None

gushiqiao's avatar
gushiqiao committed
27
28
29
30
31
32
33
34
35
36
try:
    from vllm import _custom_ops as ops
except ImportError:
    ops = None

try:
    import sgl_kernel
except ImportError:
    sgl_kernel = None

37
38
39
40
try:
    import q8_kernels.functional as Q8F
except ImportError:
    Q8F = None
helloyongyang's avatar
helloyongyang committed
41

42
43
44
45
46
try:
    import deep_gemm
except ImportError:
    deep_gemm = None

gushiqiao's avatar
gushiqiao committed
47
try:
Wq-dd's avatar
Wq-dd committed
48
    from torchao.quantization.utils import quant_int8_per_token_matmul, quantize_activation_per_token_absmax
gushiqiao's avatar
gushiqiao committed
49
50
51
except ModuleNotFoundError:
    quant_int8_per_token_matmul, quantize_activation_per_token_absmax = None, None

52
53
54
55
56
try:
    import gguf
except ImportError:
    gguf = None

57
58
59
60
try:
    import marlin_cuda_quant
except ModuleNotFoundError:
    marlin_cuda_quant = None
helloyongyang's avatar
helloyongyang committed
61

62

helloyongyang's avatar
helloyongyang committed
63
class MMWeightTemplate(metaclass=ABCMeta):
gushiqiao's avatar
fix.  
gushiqiao committed
64
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
helloyongyang's avatar
helloyongyang committed
65
66
        self.weight_name = weight_name
        self.bias_name = bias_name
gushiqiao's avatar
fix.  
gushiqiao committed
67
68
        self.lazy_load = lazy_load
        self.lazy_load_file = lazy_load_file
helloyongyang's avatar
helloyongyang committed
69
70
71
72
73
74
75
76
77
78
        self.config = {}

    @abstractmethod
    def load(self, weight_dict):
        pass

    @abstractmethod
    def apply(self, input_tensor):
        pass

79
80
    def set_config(self, config={}):
        self.config = config
helloyongyang's avatar
helloyongyang committed
81

gushiqiao's avatar
gushiqiao committed
82
    def to_cuda(self, non_blocking=False):
gushiqiao's avatar
gushiqiao committed
83
84
85
86
87
        self.weight = self.pin_weight.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_weight_scale"):
            self.weight_scale = self.pin_weight_scale.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_bias") and self.pin_bias is not None:
            self.bias = self.pin_bias.cuda(non_blocking=non_blocking)
gushiqiao's avatar
gushiqiao committed
88

89
    def to_cpu(self, non_blocking=False):
gushiqiao's avatar
gushiqiao committed
90
91
92
93
94
95
96
97
98
99
100
101
        if hasattr(self, "pin_weight"):
            self.weight = self.pin_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
            if hasattr(self, "weight_scale_name"):
                self.weight_scale = self.pin_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu()
            if self.bias is not None:
                self.bias = self.pin_bias.copy_(self.bias, non_blocking=non_blocking).cpu()
        else:
            self.weight = self.weight.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "weight_scale"):
                self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to("cpu", non_blocking=non_blocking)
102

helloyongyang's avatar
helloyongyang committed
103

Dongz's avatar
Dongz committed
104
@MM_WEIGHT_REGISTER("Default")
helloyongyang's avatar
helloyongyang committed
105
class MMWeight(MMWeightTemplate):
gushiqiao's avatar
fix.  
gushiqiao committed
106
107
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
helloyongyang's avatar
helloyongyang committed
108
109

    def load(self, weight_dict):
gushiqiao's avatar
gushiqiao committed
110
        device = weight_dict[self.weight_name].device
111
112
113
114
        if device.type == "cuda":
            self.weight = weight_dict[self.weight_name].t()
            if self.bias_name is not None:
                self.bias = weight_dict[self.bias_name]
115
116
            else:
                self.bias = None
117
118
119
        elif device.type == "cpu":
            weight_shape = weight_dict[self.weight_name].t().shape
            weight_dtype = weight_dict[self.weight_name].dtype
gushiqiao's avatar
gushiqiao committed
120
121
            self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
            self.pin_weight.copy_(weight_dict[self.weight_name].t())
gushiqiao's avatar
gushiqiao committed
122

123
124
125
            if self.bias_name is not None:
                bias_shape = weight_dict[self.bias_name].shape
                bias_dtype = weight_dict[self.bias_name].dtype
gushiqiao's avatar
gushiqiao committed
126
127
                self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
128
            else:
129
                self.bias = None
gushiqiao's avatar
gushiqiao committed
130
                self.pin_bias = None
131
            del weight_dict[self.weight_name]
gushiqiao's avatar
gushiqiao committed
132
        else:
133
            raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
helloyongyang's avatar
helloyongyang committed
134

135
136
137
138
139
140
    def _calculate_size(self):
        if self.bias is not None:
            return self.weight.numel() * self.weight.element_size() + self.bias.numel() * self.bias.element_size()

        return self.weight.numel() * self.weight.element_size()

helloyongyang's avatar
helloyongyang committed
141
142
143
144
145
146
147
148
149
    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)

helloyongyang's avatar
helloyongyang committed
150
151
152
153
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
        destination[self.weight_name] = self.weight.cpu().detach().clone().t().contiguous()
154
        if hasattr(self, "bias") and self.bias is not None:
helloyongyang's avatar
helloyongyang committed
155
156
157
            destination[self.bias_name] = self.bias.cpu().detach().clone()
        return destination

helloyongyang's avatar
helloyongyang committed
158

Dongz's avatar
Dongz committed
159
@MM_WEIGHT_REGISTER("Default-Force-FP32")
160
class MMWeightForceFP32(MMWeight):
gushiqiao's avatar
fix.  
gushiqiao committed
161
162
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
helloyongyang's avatar
helloyongyang committed
163
164
165
166

    def load(self, weight_dict):
        super().load(weight_dict)
        self.weight = self.weight.to(torch.float32)
167
        if hasattr(self, "bias") and self.bias is not None:
helloyongyang's avatar
helloyongyang committed
168
169
170
            self.bias = self.bias.to(torch.float32)


171
class MMWeightQuantTemplate(MMWeightTemplate):
172
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
gushiqiao's avatar
fix.  
gushiqiao committed
173
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
174
        self.weight_scale_name = self.weight_name.removesuffix(".weight") + ".weight_scale"
175
176
177
        self.load_func = None
        self.weight_need_transpose = True
        self.act_quant_func = None
178
179
        self.lazy_load = lazy_load
        self.lazy_load_file = lazy_load_file
180
        self.infer_dtype = GET_DTYPE()
181

helloyongyang's avatar
helloyongyang committed
182
183
184
    # =========================
    # weight load functions
    # =========================
185

186
    def load_from_disk(self):  # Need Rewrite
187
188
189
190
        if not torch._dynamo.is_compiling():
            self.weight = self.lazy_load_file.get_tensor(self.weight_name).pin_memory()
            self.weight_scale = self.lazy_load_file.get_tensor(self.weight_scale_name).float().pin_memory()
            if self.bias_name is not None:
191
                self.bias = self.lazy_load_file.get_tensor(self.bias_name).to(self.infer_dtype).pin_memory()
192
193
194
195
        else:
            self.weight = self.lazy_load_file.get_tensor(self.weight_name)
            self.weight_scale = self.lazy_load_file.get_tensor(self.weight_scale_name).float()
            if self.bias_name is not None:
196
                self.bias = self.lazy_load_file.get_tensor(self.bias_name).to(self.infer_dtype)
197

helloyongyang's avatar
helloyongyang committed
198
199
        if self.weight_need_transpose:
            self.weight = self.weight.t()
200

201
202
203
204
    def load(self, weight_dict):
        if not self.lazy_load:
            self.load_func(weight_dict)
            if self.weight_need_transpose:
gushiqiao's avatar
gushiqiao committed
205
206
207
208
                if hasattr(self, "weight"):
                    self.weight = self.weight.t()
                elif hasattr(self, "pin_weight"):
                    self.pin_weight = self.pin_weight.t()
209
210

    def clear(self):
gushiqiao's avatar
gushiqiao committed
211
        attrs = ["weight", "weight_scale", "bias", "pin_weight", "pin_weight_scale", "pin_bias"]
212
213
214
215
216
217
218
219
220
221
        for attr in attrs:
            if hasattr(self, attr):
                delattr(self, attr)
                setattr(self, attr, None)

    def _calculate_size(self):
        if self.bias is not None:
            return self.weight.numel() * self.weight.element_size() + self.weight_scale.numel() * self.weight_scale.element_size() + self.bias.numel() * self.bias.element_size()
        return self.weight.numel() * self.weight.element_size() + self.weight_scale.numel() * self.weight_scale.element_size()

222
    def load_quantized(self, weight_dict):
gushiqiao's avatar
gushiqiao committed
223
        device = weight_dict[self.weight_name].device
224
225
226
227
228
229
        if device.type == "cuda":
            self.weight = weight_dict[self.weight_name]
            self.weight_scale = weight_dict[self.weight_scale_name].float()
        elif device.type == "cpu":
            weight_shape = weight_dict[self.weight_name].shape
            weight_dtype = weight_dict[self.weight_name].dtype
gushiqiao's avatar
gushiqiao committed
230
231
            self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
            self.pin_weight.copy_(weight_dict[self.weight_name])
232
233
234

            weight_scale_shape = weight_dict[self.weight_scale_name].shape
            weight_scale_dtype = torch.float
gushiqiao's avatar
gushiqiao committed
235
236
237
            self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
            self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
            del weight_dict[self.weight_name]
gushiqiao's avatar
gushiqiao committed
238
        else:
239
            raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
240
241

    def load_fp8_perchannel_sym(self, weight_dict):
242
        if self.config.get("weight_auto_quant", False):
243
            self.weight = weight_dict[self.weight_name].to(torch.float32)
244
245
246
247
248
249
            w_quantizer = FloatQuantizer("e4m3", True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.float8_e4m3fn)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
250
251

        if self.bias_name is not None:
gushiqiao's avatar
gushiqiao committed
252
            device = weight_dict[self.bias_name].device
253
254
255
256
257
            if device.type == "cuda":
                self.bias = weight_dict[self.bias_name]
            elif device.type == "cpu":
                bias_shape = weight_dict[self.bias_name].shape
                bias_dtype = weight_dict[self.bias_name].dtype
gushiqiao's avatar
gushiqiao committed
258
259
                self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
260
261
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
262
263
        else:
            self.bias = None
gushiqiao's avatar
gushiqiao committed
264
            self.pin_bias = None
265
266

    def load_int8_perchannel_sym(self, weight_dict):
267
        if self.config.get("weight_auto_quant", False):
268
            self.weight = weight_dict[self.weight_name].to(torch.float32)
269
270
271
272
273
274
            w_quantizer = IntegerQuantizer(8, True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.int8)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
275
276

        if self.bias_name is not None:
gushiqiao's avatar
gushiqiao committed
277
            device = weight_dict[self.bias_name].device
278
279
280
281
282
            if device.type == "cuda":
                self.bias = weight_dict[self.bias_name]
            elif device.type == "cpu":
                bias_shape = weight_dict[self.bias_name].shape
                bias_dtype = weight_dict[self.bias_name].dtype
gushiqiao's avatar
gushiqiao committed
283
284
                self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
285
286
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
287
288
        else:
            self.bias = None
gushiqiao's avatar
gushiqiao committed
289
            self.pin_bias = None
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    def load_mxfp4(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp4_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
            if device.type == "cuda":
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

        if self.bias_name is not None:
            device = weight_dict[self.bias_name].device
            if device.type == "cuda":
                self.bias = weight_dict[self.bias_name]
            elif device.type == "cpu":
                bias_shape = weight_dict[self.bias_name].shape
                bias_dtype = weight_dict[self.bias_name].dtype
                self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
        else:
            self.bias = None
            self.pin_bias = None

    def load_mxfp6(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp6_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
            if device.type == "cuda":
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

        if self.bias_name is not None:
            device = weight_dict[self.bias_name].device
            if device.type == "cuda":
                self.bias = weight_dict[self.bias_name]
            elif device.type == "cpu":
                bias_shape = weight_dict[self.bias_name].shape
                bias_dtype = weight_dict[self.bias_name].dtype
                self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
        else:
            self.bias = None
            self.pin_bias = None

    def load_mxfp8(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp8_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
            if device.type == "cuda":
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

        if self.bias_name is not None:
            device = weight_dict[self.bias_name].device
            if device.type == "cuda":
                self.bias = weight_dict[self.bias_name]
            elif device.type == "cpu":
                bias_shape = weight_dict[self.bias_name].shape
                bias_dtype = weight_dict[self.bias_name].dtype
                self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
        else:
            self.bias = None
            self.pin_bias = None

    def load_nvfp4(self, weight_dict):
        device = weight_dict[self.weight_name].device

        input_absmax = weight_dict[self.weight_name.replace(".weight", ".input_absmax")]
        input_global_scale = (2688.0 / input_absmax).to(torch.float32)
        weight_global_scale = weight_dict[f"{self.weight_name}_global_scale"]
        alpha = 1.0 / (input_global_scale * weight_global_scale)

        if device.type == "cuda":
            self.weight = weight_dict[self.weight_name]
            self.weight_scale = weight_dict[self.weight_scale_name]
            self.input_global_scale = input_global_scale
            self.alpha = alpha
        elif device.type == "cpu":
            weight_shape = weight_dict[self.weight_name].shape
            weight_dtype = weight_dict[self.weight_name].dtype
            self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
            self.pin_weight.copy_(weight_dict[self.weight_name])

            weight_scale_shape = weight_dict[self.weight_scale_name].shape
            weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
            self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
            self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])

            input_global_scale_shape = input_global_scale.shape
            input_global_scale_dtype = input_global_scale.dtype
            self.pin_input_global_scale = torch.empty(input_global_scale_shape, pin_memory=True, dtype=input_global_scale_dtype)
            self.pin_input_global_scale.copy_(input_global_scale)

            alpha_shape = alpha.shape
            alpha_dtype = alpha.dtype
            self.pin_alpha = torch.empty(alpha_shape, pin_memory=True, dtype=alpha_dtype)
            self.pin_alpha.copy_(alpha)

            del weight_dict[self.weight_name]
        else:
            raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

        if self.bias_name is not None:
            device = weight_dict[self.bias_name].device
            if device.type == "cuda":
                self.bias = weight_dict[self.bias_name]
            elif device.type == "cpu":
                bias_shape = weight_dict[self.bias_name].shape
                bias_dtype = weight_dict[self.bias_name].dtype
                self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
        else:
            self.bias = None
            self.pin_bias = None

464
    def load_fp8_perblock128_sym(self, weight_dict):
465
        if self.config.get("weight_auto_quant", False):
466
            self.weight = weight_dict[self.weight_name]
467
468
469
            self.weight, self.weight_scale = self.per_block_cast_to_fp8(self.weight)
        else:
            self.load_quantized(weight_dict)
470
471

        if self.bias_name is not None:
gushiqiao's avatar
gushiqiao committed
472
            device = weight_dict[self.bias_name].device
473
474
475
476
477
            if device.type == "cuda":
                self.bias = weight_dict[self.bias_name]
            elif device.type == "cpu":
                bias_shape = weight_dict[self.bias_name].shape
                bias_dtype = weight_dict[self.bias_name].dtype
gushiqiao's avatar
gushiqiao committed
478
479
                self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
480
481
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
482
483
        else:
            self.bias = None
gushiqiao's avatar
gushiqiao committed
484
            self.pin_bias = None
485
486
487
488

    def per_block_cast_to_fp8(self, x):
        assert x.dim() == 2
        m, n = x.shape
489
490
491
492
493
        x_padded = torch.zeros(
            (deep_gemm.ceil_div(m, 128) * 128, deep_gemm.ceil_div(n, 128) * 128),
            dtype=x.dtype,
            device=x.device,
        )
494
495
496
497
498
499
        x_padded[:m, :n] = x
        x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
        x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
        x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
        return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))

helloyongyang's avatar
helloyongyang committed
500
501
502
    # =========================
    # act quant kernels
    # =========================
gushiqiao's avatar
gushiqiao committed
503
504
505
    def act_quant_int8_perchannel_sym_torchao(self, x):
        input_tensor_quant, input_tensor_scale = quantize_activation_per_token_absmax(x)
        return input_tensor_quant, input_tensor_scale
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

    def act_quant_fp8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def act_quant_fp8_perchannel_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_int8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

522
523
524
525
526
527
528
529
530
531
532
533
    def act_quant_nvfp4(self, x):
        input_tensor_quant, input_tensor_scale = scaled_nvfp4_quant(x, self.input_global_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_mxfp4(self, x):
        input_tensor_quant, input_tensor_scale = scaled_mxfp4_quant(x)
        return input_tensor_quant, input_tensor_scale

    def act_quant_mxfp8(self, x):
        input_tensor_quant, input_tensor_scale = scaled_mxfp8_quant(x)
        return input_tensor_quant, input_tensor_scale

534
535
536
537
538
539
540
541
542
543
544
    def act_quant_fp8_perchannelgroup128_sym_deepgemm(self, x):
        assert x.dim() == 2 and x.size(1) % 128 == 0
        m, n = x.shape
        x_view = x.view(m, -1, 128)
        x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
        return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1)

    def act_quant_fp8_perchannelgroup128_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, k // 128), dtype=torch.float32, device="cuda", requires_grad=False)
545
546
547
548
549
550
551
552
553
        sgl_kernel.sgl_per_token_group_quant_fp8(
            x,
            input_tensor_quant,
            input_tensor_scale,
            group_size=128,
            eps=1e-10,
            fp8_min=-448.0,
            fp8_max=448.0,
        )
554
555
        return input_tensor_quant, input_tensor_scale

556
557
558
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
helloyongyang's avatar
helloyongyang committed
559
560
561
562
        if self.weight_need_transpose:
            destination[self.weight_name] = self.weight.cpu().detach().clone().t().contiguous()
        else:
            destination[self.weight_name] = self.weight.cpu().detach().clone().contiguous()
563
        if hasattr(self, "bias") and self.bias is not None:
564
565
            destination[self.bias_name] = self.bias.cpu().detach().clone()
        if hasattr(self, "weight_scale"):
566
            destination[self.weight_name.removesuffix(".weight") + ".weight_scale"] = self.weight_scale.cpu().detach().clone()
567
568
        return destination

569

570
@MM_WEIGHT_REGISTER("fp8-vllm")
571
class MMWeightWfp8channelAfp8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
572
    """
helloyongyang's avatar
helloyongyang committed
573
574
575
576
577
578
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
579
580
    """

581
582
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
583
584
585
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
586
587
588
589
590
591

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
592
593

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
594
595
596
597
598
599
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
gushiqiao's avatar
gushiqiao committed
600
            self.bias if self.bias is not None else None,
601
        )
helloyongyang's avatar
helloyongyang committed
602
603
604
        return output_tensor


605
@MM_WEIGHT_REGISTER("int8-vllm")
606
class MMWeightWint8channelAint8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
607
    """
helloyongyang's avatar
helloyongyang committed
608
609
610
611
612
613
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
614
615
    """

616
617
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
618
619
620
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
621
622
623
624
625
626

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
627
628

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
629
630
631
632
633
634
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
gushiqiao's avatar
gushiqiao committed
635
            self.bias if self.bias is not None else None,
636
        )
helloyongyang's avatar
helloyongyang committed
637
638
639
        return output_tensor


640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
@MM_WEIGHT_REGISTER("mxfp4")
class MMWeightWmxfp4Amxfp4dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp4-A-mxfp4-dynamic

    Quant MM:
        Weight: mxfp4
        Act: mxfp4
    """

    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
        self.load_func = self.load_mxfp4
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp4
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp4_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("mxfp6-mxfp8")
class MMWeightWmxfp6Amxfp8dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp6-A-nvfp8-dynamic

    Quant MM:
        Weight: mxfp6
        Act: mxfp8
    """

    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
        self.load_func = self.load_mxfp6
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp8
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp6_mxfp8_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("mxfp8")
class MMWeightWmxfp8Amxfp8dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp8-A-nvfp8-dynamic

    Quant MM:
        Weight: mxfp8
        Act: mxfp8
    """

    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
        self.load_func = self.load_mxfp8
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp8
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp8_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("nvfp4")
class MMWeightWnvfp4Anvfp4dynamic(MMWeightQuantTemplate):
    """
    Name: W-nvfp4-A-nvfp4-dynamic

    Quant MM:
        Weight: nvfp4
        Act: nvfp4
    """

    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
        self.load_func = self.load_nvfp4
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_nvfp4

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = cutlass_scaled_nvfp4_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor

    def to_cuda(self, non_blocking=False):
        self.weight = self.pin_weight.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_weight_scale"):
            self.weight_scale = self.pin_weight_scale.cuda(non_blocking=non_blocking)
            self.input_global_scale = self.pin_input_global_scale.cuda(non_blocking=non_blocking)
            self.alpha = self.pin_alpha.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_bias") and self.pin_bias is not None:
            self.bias = self.pin_bias.cuda(non_blocking=non_blocking)

    def to_cpu(self, non_blocking=False):
        if hasattr(self, "pin_weight"):
            self.weight = self.pin_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
            if hasattr(self, "weight_scale_name"):
                self.weight_scale = self.pin_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu()
                self.input_global_scale = self.pin_input_global_scale.copy_(self.input_global_scale, non_blocking=non_blocking).cpu()
                self.alpha = self.pin_alpha.copy_(self.alpha, non_blocking=non_blocking).cpu()
            if self.bias is not None:
                self.bias = self.pin_bias.copy_(self.bias, non_blocking=non_blocking).cpu()
        else:
            self.weight = self.weight.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "weight_scale"):
                self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
                self.input_global_scale = self.input_global_scale.to("cpu", non_blocking=non_blocking)
                self.alpha = self.alpha.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to("cpu", non_blocking=non_blocking)


@MM_WEIGHT_REGISTER("Calib")
class MMCalibNvfp4(MMWeight):
    """
    Name: calib

    Calib:
        absmax: torch.max(torch.abs(input_tensor))
    """

    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
        self.running_absmax = None
        self.count = 0
        self.decay = 0.9

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype, device = input_tensor.dtype, input_tensor.device

        current_absmax = torch.max(torch.abs(input_tensor)).to("cpu")
        if self.count % 2 == 0:
            if self.running_absmax is None:
                self.running_absmax = current_absmax
            else:
                self.running_absmax = self.decay * self.running_absmax + (1 - self.decay) * current_absmax
            CALIB["absmax"][self.weight_name] = self.running_absmax
        self.count = self.count + 1

        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)


804
@MM_WEIGHT_REGISTER("fp8-q8f")
805
806
807
808
809
810
811
812
813
814
class MMWeightWfp8channelAfp8channeldynamicQ8F(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Q8F
    """

815
816
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
817
818
819
820
821
822
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
823
824
825
        output_tensor = Q8F.linear.fp8_linear(
            input_tensor_quant,
            self.weight,
gushiqiao's avatar
gushiqiao committed
826
            self.bias.float() if self.bias is not None else None,
827
828
            input_tensor_scale,
            self.weight_scale,
829
            out_dtype=self.infer_dtype,
830
        )
831
832
833
        return output_tensor.squeeze(0)


834
@MM_WEIGHT_REGISTER("int8-q8f")
835
class MMWeightWint8channelAint8channeldynamicQ8F(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
836
    """
837
838
839
840
841
842
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Q8F
Dongz's avatar
Dongz committed
843
844
    """

845
846
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
847
848
849
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
850

851
852
    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
853
854
855
        output_tensor = Q8F.linear.q8_linear(
            input_tensor_quant,
            self.weight,
gushiqiao's avatar
gushiqiao committed
856
            self.bias.float() if self.bias is not None else None,
857
858
859
            input_tensor_scale,
            self.weight_scale,
            fuse_gelu=False,
860
            out_dtype=self.infer_dtype,
861
        )
862
863
864
        return output_tensor.squeeze(0)


865
@MM_WEIGHT_REGISTER("fp8-b128-deepgemm")
866
867
868
869
870
871
872
873
874
875
class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemmActSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl

    Quant MM:
        Weight: fp8 perblock 128x128 sym
        Act: fp8 pertoken-pergroup group=128 dynamic sym
        Kernel: quant-mm using Deepgemm, act dynamic quant using Sgl-kernel
    """

876
877
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
878
879
880
881
882
883
884
885
886
887
888
        self.load_func = self.load_fp8_perblock128_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_sgl

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
889
890
891
892
893
894
        deep_gemm.gemm_fp8_fp8_bf16_nt(
            (input_tensor_quant, input_tensor_scale),
            (self.weight, self.weight_scale),
            output_tensor,
        )
        if hasattr(self, "bias") and self.bias is not None:
895
896
897
898
            output_tensor.add_(self.bias)
        return output_tensor


899
@MM_WEIGHT_REGISTER("fp8-sgl")
900
901
902
903
904
905
906
907
908
909
class MMWeightWfp8channelAfp8channeldynamicSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Sgl-kernel
    """

910
911
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
912
913
914
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl
915
916

    def apply(self, input_tensor):
917
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
918
919
920
921
922
        output_tensor = sgl_kernel.fp8_scaled_mm(
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
923
            self.infer_dtype,
924
925
            bias=self.bias,
        )
926
927
928
        return output_tensor


929
@MM_WEIGHT_REGISTER("int8-sgl")
helloyongyang's avatar
helloyongyang committed
930
class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate):
931
932
933
934
935
936
937
938
939
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm
    """

940
941
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
942
943
944
945
946
947
948
949
950
951
952
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
953
954
955
956
957
        output_tensor = sgl_kernel.int8_scaled_mm(
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
958
            self.infer_dtype,
gushiqiao's avatar
gushiqiao committed
959
            self.bias if self.bias is not None else None,
960
        )
961
        return output_tensor
962
963


964
@MM_WEIGHT_REGISTER("int8-torchao")
gushiqiao's avatar
gushiqiao committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate):
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Torchao

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Torchao
    """

    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_torchao

    def apply(self, input_tensor):
        input_tensor = input_tensor
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
984
        output_tensor = quant_int8_per_token_matmul(input_tensor_quant, input_tensor_scale, self.weight, self.weight_scale.t().float(), output_dtype=self.infer_dtype)
gushiqiao's avatar
gushiqiao committed
985
986
987
988
989
990
        if self.bias is not None:
            output_tensor = output_tensor + self.bias

        return output_tensor


991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
class MMWeightGGUFTemplate(MMWeightQuantTemplate):
    TORCH_COMPATIBLE_QTYPES = (None, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16)

    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)

    def dequantize_func(self):
        # TODO: implement dequantize_func
        pass


@MM_WEIGHT_REGISTER("W-gguf-Q4_K")
class MMWeightGGUFQ4K(MMWeightGGUFTemplate):
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)

1007

1008
@MM_WEIGHT_REGISTER("int4-g128-marlin")
1009
1010
1011
1012
1013
1014
1015
1016
class MMWeightWint4group128Marlin(MMWeightQuantTemplate):
    """
    Name: "W-int4-group128-sym-Marlin

    Quant int4 x FP16:
        Weight: int4 pergroup sym
        Kernel: Marlin
    """
1017

1018
1019
1020
1021
1022
1023
1024
1025
    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
        self.load_func = self.load_quantized

    def load(self, weight_dict):
        assert not self.lazy_load
        self.load_func(weight_dict)
        self.workspace = weight_dict[f"{self.weight_name}_workspace"]
gushiqiao's avatar
gushiqiao committed
1026

1027
        if self.bias_name is not None:
gushiqiao's avatar
gushiqiao committed
1028
1029
            bias_shape = weight_dict[self.bias_name].shape
            bias_dtype = weight_dict[self.bias_name].dtype
1030
1031
            self.bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
            self.bias.copy_(weight_dict[self.bias_name])
1032
1033
        else:
            self.bias = None
1034

1035
1036
1037
1038
1039
1040
    def apply(self, input_tensor):
        output_tensor = torch.empty(input_tensor.shape[:-1] + (self.weight_scale.shape[1],), dtype=input_tensor.dtype, device=input_tensor.device)
        marlin_cuda_quant.mul(input_tensor, self.weight, output_tensor, self.weight_scale.half(), self.workspace, -1, -1, -1, -1)
        if hasattr(self, "bias") and self.bias is not None:
            output_tensor.add_(self.bias)
        return output_tensor