vae.py 48.1 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.

import torch
PengGao's avatar
PengGao committed
4
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
5
6
7
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
root's avatar
root committed
8
from loguru import logger
helloyongyang's avatar
helloyongyang committed
9

gushiqiao's avatar
gushiqiao committed
10
from lightx2v.utils.utils import load_weights
11

helloyongyang's avatar
helloyongyang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
__all__ = [
    "WanVAE",
]

CACHE_T = 2


class CausalConv3d(nn.Conv3d):
    """
    Causal 3d convolusion.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._padding = (
            self.padding[2],
            self.padding[2],
            self.padding[1],
            self.padding[1],
            2 * self.padding[0],
            0,
        )
        self.padding = (0, 0, 0)

    def forward(self, x, cache_x=None):
        padding = list(self._padding)
        if cache_x is not None and self._padding[4] > 0:
            cache_x = cache_x.to(x.device)
            x = torch.cat([cache_x, x], dim=2)
            padding[4] -= cache_x.shape[2]
        x = F.pad(x, padding)

        return super().forward(x)


class RMS_norm(nn.Module):
    def __init__(self, dim, channel_first=True, images=True, bias=False):
        super().__init__()
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)

        self.channel_first = channel_first
        self.scale = dim**0.5
        self.gamma = nn.Parameter(torch.ones(shape))
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0

    def forward(self, x):
Dongz's avatar
Dongz committed
59
        return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
helloyongyang's avatar
helloyongyang committed
60
61
62
63
64
65
66


class Upsample(nn.Upsample):
    def forward(self, x):
        """
        Fix bfloat16 support for nearest neighbor interpolation.
        """
67
        return super().forward(x)
helloyongyang's avatar
helloyongyang committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


class Resample(nn.Module):
    def __init__(self, dim, mode):
        assert mode in (
            "none",
            "upsample2d",
            "upsample3d",
            "downsample2d",
            "downsample3d",
        )
        super().__init__()
        self.dim = dim
        self.mode = mode

        # layers
        if mode == "upsample2d":
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
                nn.Conv2d(dim, dim // 2, 3, padding=1),
            )
        elif mode == "upsample3d":
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
                nn.Conv2d(dim, dim // 2, 3, padding=1),
            )
            self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))

        elif mode == "downsample2d":
Dongz's avatar
Dongz committed
97
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
helloyongyang's avatar
helloyongyang committed
98
        elif mode == "downsample3d":
Dongz's avatar
Dongz committed
99
100
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
            self.time_conv = CausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
helloyongyang's avatar
helloyongyang committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114

        else:
            self.resample = nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        b, c, t, h, w = x.size()
        if self.mode == "upsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = "Rep"
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -CACHE_T:, :, :].clone()
Dongz's avatar
Dongz committed
115
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
helloyongyang's avatar
helloyongyang committed
116
117
118
                        # cache last frame of last two chunk
                        cache_x = torch.cat(
                            [
Dongz's avatar
Dongz committed
119
                                feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
120
121
122
123
                                cache_x,
                            ],
                            dim=2,
                        )
Dongz's avatar
Dongz committed
124
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
helloyongyang's avatar
helloyongyang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
                        cache_x = torch.cat(
                            [torch.zeros_like(cache_x).to(cache_x.device), cache_x],
                            dim=2,
                        )
                    if feat_cache[idx] == "Rep":
                        x = self.time_conv(x)
                    else:
                        x = self.time_conv(x, feat_cache[idx])
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1

                    x = x.reshape(b, 2, c, t, h, w)
                    x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
                    x = x.reshape(b, c, t * 2, h, w)
        t = x.shape[2]
        x = rearrange(x, "b c t h w -> (b t) c h w")
        x = self.resample(x)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=t)

        if self.mode == "downsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = x.clone()
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -1:, :, :].clone()
                    # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
                    #     # cache last frame of last two chunk
                    #     cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)

Dongz's avatar
Dongz committed
156
                    x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
helloyongyang's avatar
helloyongyang committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1
        return x

    def init_weight(self, conv):
        conv_weight = conv.weight
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        one_matrix = torch.eye(c1, c2)
        init_matrix = one_matrix
        nn.init.zeros_(conv_weight)
        # conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
        conv_weight.data[:, :, 1, 0, 0] = init_matrix  # * 0.5
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def init_weight2(self, conv):
        conv_weight = conv.weight.data
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        init_matrix = torch.eye(c1 // 2, c2)
        # init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
        conv_weight[: c1 // 2, :, -1, 0, 0] = init_matrix
        conv_weight[c1 // 2 :, :, -1, 0, 0] = init_matrix
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)


class ResidualBlock(nn.Module):
    def __init__(self, in_dim, out_dim, dropout=0.0):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim

        # layers
        self.residual = nn.Sequential(
            RMS_norm(in_dim, images=False),
            nn.SiLU(),
            CausalConv3d(in_dim, out_dim, 3, padding=1),
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            nn.Dropout(dropout),
            CausalConv3d(out_dim, out_dim, 3, padding=1),
        )
Dongz's avatar
Dongz committed
201
        self.shortcut = CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
helloyongyang's avatar
helloyongyang committed
202
203
204
205
206
207
208
209
210
211
212

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        h = self.shortcut(x)
        for layer in self.residual:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
213
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x + h


class AttentionBlock(nn.Module):
    """
    Causal self-attention with a single head.
    """

    def __init__(self, dim):
        super().__init__()
        self.dim = dim

        # layers
        self.norm = RMS_norm(dim)
        self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
        self.proj = nn.Conv2d(dim, dim, 1)

        # zero out the last layer params
        nn.init.zeros_(self.proj.weight)

    def forward(self, x):
        identity = x
        b, c, t, h, w = x.size()
        x = rearrange(x, "b c t h w -> (b t) c h w")
        x = self.norm(x)
        # compute query, key, value
Dongz's avatar
Dongz committed
249
        q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1)
helloyongyang's avatar
helloyongyang committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

        # apply attention
        x = F.scaled_dot_product_attention(
            q,
            k,
            v,
        )
        x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)

        # output
        x = self.proj(x)
        x = rearrange(x, "(b t) c h w-> b c t h w", t=t)
        return x + identity


class Encoder3d(nn.Module):
gushiqiao's avatar
gushiqiao committed
266
    def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0, pruning_rate=0.0):
helloyongyang's avatar
helloyongyang committed
267
268
269
270
271
272
273
274
275
276
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample

        # dimensions
        dims = [dim * u for u in [1] + dim_mult]
gushiqiao's avatar
gushiqiao committed
277
        dims = [int(d * (1 - pruning_rate)) for d in dims]
helloyongyang's avatar
helloyongyang committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        scale = 1.0

        # init block
        self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)

        # downsample blocks
        downsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            for _ in range(num_res_blocks):
                downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    downsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # downsample block
            if i != len(dim_mult) - 1:
                mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
                downsamples.append(Resample(out_dim, mode=mode))
                scale /= 2.0
        self.downsamples = nn.Sequential(*downsamples)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(out_dim, out_dim, dropout),
            AttentionBlock(out_dim),
            ResidualBlock(out_dim, out_dim, dropout),
        )

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            CausalConv3d(out_dim, z_dim, 3, padding=1),
        )

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat(
                    [
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
                        cache_x,
                    ],
                    dim=2,
                )
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## downsamples
        for layer in self.downsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
356
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
357
358
359
360
361
362
363
364
365
366
367
368
369
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


class Decoder3d(nn.Module):
gushiqiao's avatar
gushiqiao committed
370
    def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_upsample=[False, True, True], dropout=0.0, pruning_rate=0.0):
helloyongyang's avatar
helloyongyang committed
371
372
373
374
375
376
377
378
379
380
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_upsample = temperal_upsample

        # dimensions
        dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
gushiqiao's avatar
gushiqiao committed
381
382
        dims = [int(d * (1 - pruning_rate)) for d in dims]

helloyongyang's avatar
helloyongyang committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        scale = 1.0 / 2 ** (len(dim_mult) - 2)

        # init block
        self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(dims[0], dims[0], dropout),
            AttentionBlock(dims[0]),
            ResidualBlock(dims[0], dims[0], dropout),
        )

        # upsample blocks
        upsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            if i == 1 or i == 2 or i == 3:
                in_dim = in_dim // 2
            for _ in range(num_res_blocks + 1):
                upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    upsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # upsample block
            if i != len(dim_mult) - 1:
                mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
                upsamples.append(Resample(out_dim, mode=mode))
                scale *= 2.0
        self.upsamples = nn.Sequential(*upsamples)

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            CausalConv3d(out_dim, 3, 3, padding=1),
        )

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        ## conv1
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat(
                    [
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
                        cache_x,
                    ],
                    dim=2,
                )
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## upsamples
        for layer in self.upsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
464
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


def count_conv3d(model):
    count = 0
    for m in model.modules():
        if isinstance(m, CausalConv3d):
            count += 1
    return count


class WanVAE_(nn.Module):
gushiqiao's avatar
gushiqiao committed
486
    def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0, pruning_rate=0.0):
helloyongyang's avatar
helloyongyang committed
487
488
489
490
491
492
493
494
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample
        self.temperal_upsample = temperal_downsample[::-1]
495
        self.spatial_compression_ratio = 2 ** len(self.temperal_downsample)
helloyongyang's avatar
helloyongyang committed
496

497
498
499
500
501
502
503
        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 256
        self.tile_sample_min_width = 256

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 192
        self.tile_sample_stride_width = 192
helloyongyang's avatar
helloyongyang committed
504
505
506
507
508
509
510
511
512
        # modules
        self.encoder = Encoder3d(
            dim,
            z_dim * 2,
            dim_mult,
            num_res_blocks,
            attn_scales,
            self.temperal_downsample,
            dropout,
gushiqiao's avatar
gushiqiao committed
513
            pruning_rate,
helloyongyang's avatar
helloyongyang committed
514
515
516
517
518
519
520
521
522
523
524
        )
        self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
        self.conv2 = CausalConv3d(z_dim, z_dim, 1)
        self.decoder = Decoder3d(
            dim,
            z_dim,
            dim_mult,
            num_res_blocks,
            attn_scales,
            self.temperal_upsample,
            dropout,
gushiqiao's avatar
gushiqiao committed
525
            pruning_rate,
helloyongyang's avatar
helloyongyang committed
526
527
528
529
530
531
532
533
        )

    def forward(self, x):
        mu, log_var = self.encode(x)
        z = self.reparameterize(mu, log_var)
        x_recon = self.decode(z)
        return x_recon, mu, log_var

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    def blend_v(self, a, b, blend_extent):
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
        return b

    def blend_h(self, a, b, blend_extent):
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
        return b

    def tiled_encode(self, x, scale):
        _, _, num_frames, height, width = x.shape
        latent_height = height // self.spatial_compression_ratio
        latent_width = width // self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = tile_latent_min_height - tile_latent_stride_height
        blend_width = tile_latent_min_width - tile_latent_stride_width

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, self.tile_sample_stride_height):
            row = []
            for j in range(0, width, self.tile_sample_stride_width):
                self.clear_cache()
                time = []
                frame_range = 1 + (num_frames - 1) // 4
                for k in range(frame_range):
                    self._enc_conv_idx = [0]
                    if k == 0:
                        tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                    else:
                        tile = x[
                            :,
                            :,
                            1 + 4 * (k - 1) : 1 + 4 * k,
                            i : i + self.tile_sample_min_height,
                            j : j + self.tile_sample_min_width,
                        ]
                    tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
                    mu, log_var = self.conv1(tile).chunk(2, dim=1)
                    if isinstance(scale[0], torch.Tensor):
                        mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
                    else:
                        mu = (mu - scale[0]) * scale[1]

                    time.append(mu)

                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
        return enc

    def tiled_decode(self, z, scale):
        if isinstance(scale[0], torch.Tensor):
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
        else:
            z = z / scale[1] + scale[0]

        _, _, num_frames, height, width = z.shape
        sample_height = height * self.spatial_compression_ratio
        sample_width = width * self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
        blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, tile_latent_stride_height):
            row = []
            for j in range(0, width, tile_latent_stride_width):
                self.clear_cache()
                time = []
                for k in range(num_frames):
                    self._conv_idx = [0]
                    tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
                    tile = self.conv2(tile)
                    decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx)
                    time.append(decoded)
                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]

        return dec

gushiqiao's avatar
gushiqiao committed
662
    def encode(self, x, scale, return_mu=False):
helloyongyang's avatar
helloyongyang committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
        self.clear_cache()
        ## cache
        t = x.shape[2]
        iter_ = 1 + (t - 1) // 4
        for i in range(iter_):
            self._enc_conv_idx = [0]
            if i == 0:
                out = self.encoder(
                    x[:, :, :1, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
            else:
                out_ = self.encoder(
                    x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
                out = torch.cat([out, out_], 2)
        mu, log_var = self.conv1(out).chunk(2, dim=1)
        if isinstance(scale[0], torch.Tensor):
Dongz's avatar
Dongz committed
684
            mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
helloyongyang's avatar
helloyongyang committed
685
686
        else:
            mu = (mu - scale[0]) * scale[1]
687

helloyongyang's avatar
helloyongyang committed
688
        self.clear_cache()
gushiqiao's avatar
gushiqiao committed
689
690
691
692
        if return_mu:
            return mu, log_var
        else:
            return mu
helloyongyang's avatar
helloyongyang committed
693
694
695

    def decode(self, z, scale):
        self.clear_cache()
696

helloyongyang's avatar
helloyongyang committed
697
698
        # z: [b,c,t,h,w]
        if isinstance(scale[0], torch.Tensor):
Dongz's avatar
Dongz committed
699
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
helloyongyang's avatar
helloyongyang committed
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        else:
            z = z / scale[1] + scale[0]
        iter_ = z.shape[2]
        x = self.conv2(z)
        for i in range(iter_):
            self._conv_idx = [0]
            if i == 0:
                out = self.decoder(
                    x[:, :, i : i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx,
                )
            else:
                out_ = self.decoder(
                    x[:, :, i : i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx,
                )
                out = torch.cat([out, out_], 2)
719

helloyongyang's avatar
helloyongyang committed
720
721
722
723
724
725
726
727
        self.clear_cache()
        return out

    def reparameterize(self, mu, log_var):
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return eps * std + mu

gushiqiao's avatar
gushiqiao committed
728
729
    def sample(self, imgs, deterministic=False, scale=[0, 1]):
        mu, log_var = self.encode(imgs, scale, return_mu=True)
helloyongyang's avatar
helloyongyang committed
730
731
732
        if deterministic:
            return mu
        std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
gushiqiao's avatar
gushiqiao committed
733
        return mu + std * torch.randn_like(std), mu, log_var
helloyongyang's avatar
helloyongyang committed
734
735
736
737
738
739
740
741
742
743

    def clear_cache(self):
        self._conv_num = count_conv3d(self.decoder)
        self._conv_idx = [0]
        self._feat_map = [None] * self._conv_num
        # cache encode
        self._enc_conv_num = count_conv3d(self.encoder)
        self._enc_conv_idx = [0]
        self._enc_feat_map = [None] * self._enc_conv_num

gushiqiao's avatar
gushiqiao committed
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    def encode_video(self, x, scale=[0, 1]):
        assert x.ndim == 5  # NTCHW
        assert x.shape[2] % 3 == 0
        x = x.transpose(1, 2)
        y = x.mul(2).sub_(1)
        y, mu, log_var = self.sample(y, scale=scale)
        return y.transpose(1, 2).to(x), mu, log_var

    def decode_video(self, x, scale=[0, 1]):
        assert x.ndim == 5  # NTCHW
        assert x.shape[2] % self.z_dim == 0
        x = x.transpose(1, 2)
        # B, C, T, H, W
        y = x
        y = self.decode(y, scale).clamp_(-1, 1)
        y = y.mul_(0.5).add_(0.5).clamp_(0, 1)  # NCTHW
        return y.transpose(1, 2).to(x)

helloyongyang's avatar
helloyongyang committed
762

gushiqiao's avatar
gushiqiao committed
763
def _video_vae(pretrained_path=None, z_dim=None, device="cpu", cpu_offload=False, dtype=torch.float, load_from_rank0=False, pruning_rate=0.0, **kwargs):
helloyongyang's avatar
helloyongyang committed
764
765
766
767
768
769
770
771
772
773
774
775
    """
    Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
    """
    # params
    cfg = dict(
        dim=96,
        z_dim=z_dim,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[False, True, True],
        dropout=0.0,
gushiqiao's avatar
gushiqiao committed
776
        pruning_rate=pruning_rate,
helloyongyang's avatar
helloyongyang committed
777
778
779
780
781
782
783
784
    )
    cfg.update(**kwargs)

    # init model
    with torch.device("meta"):
        model = WanVAE_(**cfg)

    # load checkpoint
785
    weights_dict = load_weights(pretrained_path, cpu_offload=cpu_offload, load_from_rank0=load_from_rank0)
786
787
788
    for k in weights_dict.keys():
        if weights_dict[k].dtype != dtype:
            weights_dict[k] = weights_dict[k].to(dtype)
789
    model.load_state_dict(weights_dict, assign=True)
helloyongyang's avatar
helloyongyang committed
790
791
792
793
794
795
796
797
798
799
800

    return model


class WanVAE:
    def __init__(
        self,
        z_dim=16,
        vae_pth="cache/vae_step_411000.pth",
        dtype=torch.float,
        device="cuda",
Xinchi Huang's avatar
Xinchi Huang committed
801
        parallel=False,
802
        use_tiling=False,
803
        cpu_offload=False,
804
        use_2d_split=True,
805
        load_from_rank0=False,
gushiqiao's avatar
gushiqiao committed
806
        use_lightvae=False,
helloyongyang's avatar
helloyongyang committed
807
808
809
    ):
        self.dtype = dtype
        self.device = device
Xinchi Huang's avatar
Xinchi Huang committed
810
        self.parallel = parallel
811
        self.use_tiling = use_tiling
812
        self.cpu_offload = cpu_offload
813
        self.use_2d_split = use_2d_split
gushiqiao's avatar
gushiqiao committed
814
815
816
817
        if use_lightvae:
            pruning_rate = 0.75  # 0.75
        else:
            pruning_rate = 0.0
helloyongyang's avatar
helloyongyang committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

        mean = [
            -0.7571,
            -0.7089,
            -0.9113,
            0.1075,
            -0.1745,
            0.9653,
            -0.1517,
            1.5508,
            0.4134,
            -0.0715,
            0.5517,
            -0.3632,
            -0.1922,
            -0.9497,
            0.2503,
            -0.2921,
        ]
        std = [
            2.8184,
            1.4541,
            2.3275,
            2.6558,
            1.2196,
            1.7708,
            2.6052,
            2.0743,
            3.2687,
            2.1526,
            2.8652,
            1.5579,
            1.6382,
            1.1253,
            2.8251,
            1.9160,
        ]
        self.mean = torch.tensor(mean, dtype=dtype, device=device)
TorynCurtis's avatar
TorynCurtis committed
856
857
        self.inv_std = 1.0 / torch.tensor(std, dtype=dtype, device=device)
        self.scale = [self.mean, self.inv_std]
helloyongyang's avatar
helloyongyang committed
858

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
        # (height, width, world_size) -> (world_size_h, world_size_w)
        self.grid_table = {
            # world_size = 2
            (60, 104, 2): (1, 2),
            (68, 120, 2): (1, 2),
            (90, 160, 2): (1, 2),
            (60, 60, 2): (1, 2),
            (72, 72, 2): (1, 2),
            (88, 88, 2): (1, 2),
            (120, 120, 2): (1, 2),
            (104, 60, 2): (2, 1),
            (120, 68, 2): (2, 1),
            (160, 90, 2): (2, 1),
            # world_size = 4
            (60, 104, 4): (2, 2),
            (68, 120, 4): (2, 2),
            (90, 160, 4): (2, 2),
            (60, 60, 4): (2, 2),
            (72, 72, 4): (2, 2),
            (88, 88, 4): (2, 2),
            (120, 120, 4): (2, 2),
            (104, 60, 4): (2, 2),
            (120, 68, 4): (2, 2),
            (160, 90, 4): (2, 2),
            # world_size = 8
            (60, 104, 8): (2, 4),
            (68, 120, 8): (2, 4),
            (90, 160, 8): (2, 4),
            (60, 60, 8): (2, 4),
            (72, 72, 8): (2, 4),
            (88, 88, 8): (2, 4),
            (120, 120, 8): (2, 4),
            (104, 60, 8): (4, 2),
            (120, 68, 8): (4, 2),
            (160, 90, 8): (4, 2),
        }

helloyongyang's avatar
helloyongyang committed
896
        # init model
gushiqiao's avatar
gushiqiao committed
897
898
899
900
901
902
903
        self.model = (
            _video_vae(pretrained_path=vae_pth, z_dim=z_dim, cpu_offload=cpu_offload, dtype=dtype, load_from_rank0=load_from_rank0, pruning_rate=pruning_rate)
            .eval()
            .requires_grad_(False)
            .to(device)
            .to(dtype)
        )
helloyongyang's avatar
helloyongyang committed
904

905
906
907
    def _calculate_2d_grid(self, latent_height, latent_width, world_size):
        if (latent_height, latent_width, world_size) in self.grid_table:
            best_h, best_w = self.grid_table[(latent_height, latent_width, world_size)]
908
            # logger.info(f"Vae using cached 2D grid: {best_h}x{best_w} grid for {latent_height}x{latent_width} latent")
909
910
911
912
913
914
915
916
917
918
919
920
921
922
            return best_h, best_w

        best_h, best_w = 1, world_size
        min_aspect_diff = float("inf")

        for h in range(1, world_size + 1):
            if world_size % h == 0:
                w = world_size // h
                if latent_height % h == 0 and latent_width % w == 0:
                    # Calculate how close this grid is to square
                    aspect_diff = abs((latent_height / h) - (latent_width / w))
                    if aspect_diff < min_aspect_diff:
                        min_aspect_diff = aspect_diff
                        best_h, best_w = h, w
923
        # logger.info(f"Vae using 2D grid & Update cache: {best_h}x{best_w} grid for {latent_height}x{latent_width} latent")
924
925
926
        self.grid_table[(latent_height, latent_width, world_size)] = (best_h, best_w)
        return best_h, best_w

wangshankun's avatar
wangshankun committed
927
928
929
    def current_device(self):
        return next(self.model.parameters()).device

TorynCurtis's avatar
TorynCurtis committed
930
    def to_cpu(self):
wangshankun's avatar
wangshankun committed
931
932
        self.model.encoder = self.model.encoder.to("cpu")
        self.model.decoder = self.model.decoder.to("cpu")
TorynCurtis's avatar
TorynCurtis committed
933
934
935
936
937
938
        self.model = self.model.to("cpu")
        self.mean = self.mean.cpu()
        self.inv_std = self.inv_std.cpu()
        self.scale = [self.mean, self.inv_std]

    def to_cuda(self):
wangshankun's avatar
wangshankun committed
939
940
        self.model.encoder = self.model.encoder.to("cuda")
        self.model.decoder = self.model.decoder.to("cuda")
TorynCurtis's avatar
TorynCurtis committed
941
942
943
944
945
        self.model = self.model.to("cuda")
        self.mean = self.mean.cuda()
        self.inv_std = self.inv_std.cuda()
        self.scale = [self.mean, self.inv_std]

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
    def encode_dist(self, video, world_size, cur_rank, split_dim):
        spatial_ratio = 8

        if split_dim == 3:
            total_latent_len = video.shape[3] // spatial_ratio
        elif split_dim == 4:
            total_latent_len = video.shape[4] // spatial_ratio
        else:
            raise ValueError(f"Unsupported split_dim: {split_dim}")

        splited_chunk_len = total_latent_len // world_size
        padding_size = 1

        video_chunk_len = splited_chunk_len * spatial_ratio
        video_padding_len = padding_size * spatial_ratio

        if cur_rank == 0:
            if split_dim == 3:
                video_chunk = video[:, :, :, : video_chunk_len + 2 * video_padding_len, :].contiguous()
            elif split_dim == 4:
                video_chunk = video[:, :, :, :, : video_chunk_len + 2 * video_padding_len].contiguous()
        elif cur_rank == world_size - 1:
            if split_dim == 3:
                video_chunk = video[:, :, :, -(video_chunk_len + 2 * video_padding_len) :, :].contiguous()
            elif split_dim == 4:
                video_chunk = video[:, :, :, :, -(video_chunk_len + 2 * video_padding_len) :].contiguous()
        else:
            start_idx = cur_rank * video_chunk_len - video_padding_len
            end_idx = (cur_rank + 1) * video_chunk_len + video_padding_len
            if split_dim == 3:
                video_chunk = video[:, :, :, start_idx:end_idx, :].contiguous()
            elif split_dim == 4:
                video_chunk = video[:, :, :, :, start_idx:end_idx].contiguous()

        if self.use_tiling:
981
            encoded_chunk = self.model.tiled_encode(video_chunk, self.scale)
982
        else:
983
            encoded_chunk = self.model.encode(video_chunk, self.scale)
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

        if cur_rank == 0:
            if split_dim == 3:
                encoded_chunk = encoded_chunk[:, :, :, :splited_chunk_len, :].contiguous()
            elif split_dim == 4:
                encoded_chunk = encoded_chunk[:, :, :, :, :splited_chunk_len].contiguous()
        elif cur_rank == world_size - 1:
            if split_dim == 3:
                encoded_chunk = encoded_chunk[:, :, :, -splited_chunk_len:, :].contiguous()
            elif split_dim == 4:
                encoded_chunk = encoded_chunk[:, :, :, :, -splited_chunk_len:].contiguous()
        else:
            if split_dim == 3:
                encoded_chunk = encoded_chunk[:, :, :, padding_size:-padding_size, :].contiguous()
            elif split_dim == 4:
                encoded_chunk = encoded_chunk[:, :, :, :, padding_size:-padding_size].contiguous()

        full_encoded = [torch.empty_like(encoded_chunk) for _ in range(world_size)]
        dist.all_gather(full_encoded, encoded_chunk)

        torch.cuda.synchronize()

        encoded = torch.cat(full_encoded, dim=split_dim)

        return encoded.squeeze(0)

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    def encode_dist_2d(self, video, world_size_h, world_size_w, cur_rank_h, cur_rank_w):
        spatial_ratio = 8

        # Calculate chunk sizes for both dimensions
        total_latent_h = video.shape[3] // spatial_ratio
        total_latent_w = video.shape[4] // spatial_ratio

        chunk_h = total_latent_h // world_size_h
        chunk_w = total_latent_w // world_size_w

        padding_size = 1
        video_chunk_h = chunk_h * spatial_ratio
        video_chunk_w = chunk_w * spatial_ratio
        video_padding_h = padding_size * spatial_ratio
        video_padding_w = padding_size * spatial_ratio

        # Calculate H dimension slice
        if cur_rank_h == 0:
            h_start = 0
            h_end = video_chunk_h + 2 * video_padding_h
        elif cur_rank_h == world_size_h - 1:
            h_start = video.shape[3] - (video_chunk_h + 2 * video_padding_h)
            h_end = video.shape[3]
        else:
            h_start = cur_rank_h * video_chunk_h - video_padding_h
            h_end = (cur_rank_h + 1) * video_chunk_h + video_padding_h

        # Calculate W dimension slice
        if cur_rank_w == 0:
            w_start = 0
            w_end = video_chunk_w + 2 * video_padding_w
        elif cur_rank_w == world_size_w - 1:
            w_start = video.shape[4] - (video_chunk_w + 2 * video_padding_w)
            w_end = video.shape[4]
        else:
            w_start = cur_rank_w * video_chunk_w - video_padding_w
            w_end = (cur_rank_w + 1) * video_chunk_w + video_padding_w

        # Extract the video chunk for this process
        video_chunk = video[:, :, :, h_start:h_end, w_start:w_end].contiguous()

        # Encode the chunk
        if self.use_tiling:
            encoded_chunk = self.model.tiled_encode(video_chunk, self.scale)
        else:
            encoded_chunk = self.model.encode(video_chunk, self.scale)

        # Remove padding from encoded chunk
        if cur_rank_h == 0:
            encoded_h_start = 0
            encoded_h_end = chunk_h
        elif cur_rank_h == world_size_h - 1:
            encoded_h_start = encoded_chunk.shape[3] - chunk_h
            encoded_h_end = encoded_chunk.shape[3]
        else:
            encoded_h_start = padding_size
            encoded_h_end = encoded_chunk.shape[3] - padding_size

        if cur_rank_w == 0:
            encoded_w_start = 0
            encoded_w_end = chunk_w
        elif cur_rank_w == world_size_w - 1:
            encoded_w_start = encoded_chunk.shape[4] - chunk_w
            encoded_w_end = encoded_chunk.shape[4]
        else:
            encoded_w_start = padding_size
            encoded_w_end = encoded_chunk.shape[4] - padding_size

        encoded_chunk = encoded_chunk[:, :, :, encoded_h_start:encoded_h_end, encoded_w_start:encoded_w_end].contiguous()

        # Gather all chunks
        total_processes = world_size_h * world_size_w
        full_encoded = [torch.empty_like(encoded_chunk) for _ in range(total_processes)]

        dist.all_gather(full_encoded, encoded_chunk)

        torch.cuda.synchronize()

        # Reconstruct the full encoded tensor
        encoded_rows = []
        for h_idx in range(world_size_h):
            encoded_cols = []
            for w_idx in range(world_size_w):
                process_idx = h_idx * world_size_w + w_idx
                encoded_cols.append(full_encoded[process_idx])
            encoded_rows.append(torch.cat(encoded_cols, dim=4))

        encoded = torch.cat(encoded_rows, dim=3)

        return encoded.squeeze(0)

sandy's avatar
sandy committed
1101
    def encode(self, video):
helloyongyang's avatar
helloyongyang committed
1102
        """
sandy's avatar
sandy committed
1103
        video: one video  with shape [1, C, T, H, W].
helloyongyang's avatar
helloyongyang committed
1104
        """
1105
        if self.cpu_offload:
gushiqiao's avatar
gushiqiao committed
1106
1107
            self.to_cuda()

1108
1109
1110
1111
1112
        if self.parallel:
            world_size = dist.get_world_size()
            cur_rank = dist.get_rank()
            height, width = video.shape[3], video.shape[4]

1113
1114
1115
1116
1117
            if self.use_2d_split:
                world_size_h, world_size_w = self._calculate_2d_grid(height // 8, width // 8, world_size)
                cur_rank_h = cur_rank // world_size_w
                cur_rank_w = cur_rank % world_size_w
                out = self.encode_dist_2d(video, world_size_h, world_size_w, cur_rank_h, cur_rank_w)
1118
            else:
1119
1120
1121
1122
1123
                # Original 1D splitting logic
                if width % world_size == 0:
                    out = self.encode_dist(video, world_size, cur_rank, split_dim=4)
                elif height % world_size == 0:
                    out = self.encode_dist(video, world_size, cur_rank, split_dim=3)
1124
                else:
1125
1126
1127
1128
1129
                    logger.info("Fall back to naive encode mode")
                    if self.use_tiling:
                        out = self.model.tiled_encode(video, self.scale).squeeze(0)
                    else:
                        out = self.model.encode(video, self.scale).squeeze(0)
1130
        else:
1131
            if self.use_tiling:
1132
                out = self.model.tiled_encode(video, self.scale).squeeze(0)
1133
            else:
1134
                out = self.model.encode(video, self.scale).squeeze(0)
gushiqiao's avatar
gushiqiao committed
1135

1136
        if self.cpu_offload:
gushiqiao's avatar
gushiqiao committed
1137
1138
            self.to_cpu()
        return out
Dongz's avatar
Dongz committed
1139

Xinchi Huang's avatar
Xinchi Huang committed
1140
1141
1142
1143
1144
1145
1146
    def decode_dist(self, zs, world_size, cur_rank, split_dim):
        splited_total_len = zs.shape[split_dim]
        splited_chunk_len = splited_total_len // world_size
        padding_size = 1

        if cur_rank == 0:
            if split_dim == 2:
Dongz's avatar
Dongz committed
1147
                zs = zs[:, :, : splited_chunk_len + 2 * padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1148
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1149
1150
                zs = zs[:, :, :, : splited_chunk_len + 2 * padding_size].contiguous()
        elif cur_rank == world_size - 1:
Xinchi Huang's avatar
Xinchi Huang committed
1151
            if split_dim == 2:
Dongz's avatar
Dongz committed
1152
                zs = zs[:, :, -(splited_chunk_len + 2 * padding_size) :, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1153
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1154
                zs = zs[:, :, :, -(splited_chunk_len + 2 * padding_size) :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1155
1156
        else:
            if split_dim == 2:
Dongz's avatar
Dongz committed
1157
                zs = zs[:, :, cur_rank * splited_chunk_len - padding_size : (cur_rank + 1) * splited_chunk_len + padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1158
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1159
                zs = zs[:, :, :, cur_rank * splited_chunk_len - padding_size : (cur_rank + 1) * splited_chunk_len + padding_size].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1160

1161
        decode_func = self.model.tiled_decode if self.use_tiling else self.model.decode
1162
        images = decode_func(zs.unsqueeze(0), self.scale).clamp_(-1, 1)
Xinchi Huang's avatar
Xinchi Huang committed
1163
1164
1165

        if cur_rank == 0:
            if split_dim == 2:
Dongz's avatar
Dongz committed
1166
                images = images[:, :, :, : splited_chunk_len * 8, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1167
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1168
1169
                images = images[:, :, :, :, : splited_chunk_len * 8].contiguous()
        elif cur_rank == world_size - 1:
Xinchi Huang's avatar
Xinchi Huang committed
1170
            if split_dim == 2:
Dongz's avatar
Dongz committed
1171
                images = images[:, :, :, -splited_chunk_len * 8 :, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1172
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1173
                images = images[:, :, :, :, -splited_chunk_len * 8 :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1174
1175
        else:
            if split_dim == 2:
Dongz's avatar
Dongz committed
1176
                images = images[:, :, :, 8 * padding_size : -8 * padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1177
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1178
                images = images[:, :, :, :, 8 * padding_size : -8 * padding_size].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1179
1180
1181
1182
1183
1184

        full_images = [torch.empty_like(images) for _ in range(world_size)]
        dist.all_gather(full_images, images)

        torch.cuda.synchronize()

1185
        images = torch.cat(full_images, dim=split_dim + 1)
Xinchi Huang's avatar
Xinchi Huang committed
1186
1187

        return images
helloyongyang's avatar
helloyongyang committed
1188

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
    def decode_dist_2d(self, zs, world_size_h, world_size_w, cur_rank_h, cur_rank_w):
        total_h = zs.shape[2]
        total_w = zs.shape[3]

        chunk_h = total_h // world_size_h
        chunk_w = total_w // world_size_w

        padding_size = 1

        # Calculate H dimension slice
        if cur_rank_h == 0:
            h_start = 0
            h_end = chunk_h + 2 * padding_size
        elif cur_rank_h == world_size_h - 1:
            h_start = total_h - (chunk_h + 2 * padding_size)
            h_end = total_h
        else:
            h_start = cur_rank_h * chunk_h - padding_size
            h_end = (cur_rank_h + 1) * chunk_h + padding_size

        # Calculate W dimension slice
        if cur_rank_w == 0:
            w_start = 0
            w_end = chunk_w + 2 * padding_size
        elif cur_rank_w == world_size_w - 1:
            w_start = total_w - (chunk_w + 2 * padding_size)
            w_end = total_w
        else:
            w_start = cur_rank_w * chunk_w - padding_size
            w_end = (cur_rank_w + 1) * chunk_w + padding_size

        # Extract the latent chunk for this process
        zs_chunk = zs[:, :, h_start:h_end, w_start:w_end].contiguous()

        # Decode the chunk
        decode_func = self.model.tiled_decode if self.use_tiling else self.model.decode
        images_chunk = decode_func(zs_chunk.unsqueeze(0), self.scale).clamp_(-1, 1)

        # Remove padding from decoded chunk
        spatial_ratio = 8
        if cur_rank_h == 0:
            decoded_h_start = 0
            decoded_h_end = chunk_h * spatial_ratio
        elif cur_rank_h == world_size_h - 1:
            decoded_h_start = images_chunk.shape[3] - chunk_h * spatial_ratio
            decoded_h_end = images_chunk.shape[3]
        else:
            decoded_h_start = padding_size * spatial_ratio
            decoded_h_end = images_chunk.shape[3] - padding_size * spatial_ratio

        if cur_rank_w == 0:
            decoded_w_start = 0
            decoded_w_end = chunk_w * spatial_ratio
        elif cur_rank_w == world_size_w - 1:
            decoded_w_start = images_chunk.shape[4] - chunk_w * spatial_ratio
            decoded_w_end = images_chunk.shape[4]
        else:
            decoded_w_start = padding_size * spatial_ratio
            decoded_w_end = images_chunk.shape[4] - padding_size * spatial_ratio

        images_chunk = images_chunk[:, :, :, decoded_h_start:decoded_h_end, decoded_w_start:decoded_w_end].contiguous()

        # Gather all chunks
        total_processes = world_size_h * world_size_w
        full_images = [torch.empty_like(images_chunk) for _ in range(total_processes)]

        dist.all_gather(full_images, images_chunk)

        torch.cuda.synchronize()

        # Reconstruct the full image tensor
        image_rows = []
        for h_idx in range(world_size_h):
            image_cols = []
            for w_idx in range(world_size_w):
                process_idx = h_idx * world_size_w + w_idx
                image_cols.append(full_images[process_idx])
            image_rows.append(torch.cat(image_cols, dim=4))

        images = torch.cat(image_rows, dim=3)

        return images

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
1272
    def decode(self, zs):
1273
        if self.cpu_offload:
TorynCurtis's avatar
TorynCurtis committed
1274
1275
            self.to_cuda()

1276
        if self.parallel:
Xinchi Huang's avatar
Xinchi Huang committed
1277
1278
            world_size = dist.get_world_size()
            cur_rank = dist.get_rank()
1279
            latent_height, latent_width = zs.shape[2], zs.shape[3]
1280

1281
1282
1283
1284
1285
            if self.use_2d_split:
                world_size_h, world_size_w = self._calculate_2d_grid(latent_height, latent_width, world_size)
                cur_rank_h = cur_rank // world_size_w
                cur_rank_w = cur_rank % world_size_w
                images = self.decode_dist_2d(zs, world_size_h, world_size_w, cur_rank_h, cur_rank_w)
Xinchi Huang's avatar
Xinchi Huang committed
1286
            else:
1287
1288
1289
1290
1291
1292
1293
1294
                # Original 1D splitting logic
                if latent_width % world_size == 0:
                    images = self.decode_dist(zs, world_size, cur_rank, split_dim=3)
                elif latent_height % world_size == 0:
                    images = self.decode_dist(zs, world_size, cur_rank, split_dim=2)
                else:
                    logger.info("Fall back to naive decode mode")
                    images = self.model.decode(zs.unsqueeze(0), self.scale).clamp_(-1, 1)
Xinchi Huang's avatar
Xinchi Huang committed
1295
        else:
1296
            decode_func = self.model.tiled_decode if self.use_tiling else self.model.decode
1297
            images = decode_func(zs.unsqueeze(0), self.scale).clamp_(-1, 1)
TorynCurtis's avatar
TorynCurtis committed
1298

1299
        if self.cpu_offload:
1300
            images = images.cpu()
TorynCurtis's avatar
TorynCurtis committed
1301
1302
            self.to_cpu()

Xinchi Huang's avatar
Xinchi Huang committed
1303
        return images
1304

gushiqiao's avatar
gushiqiao committed
1305
1306
    def encode_video(self, vid):
        return self.model.encode_video(vid)
1307

gushiqiao's avatar
gushiqiao committed
1308
1309
    def decode_video(self, vid_enc):
        return self.model.decode_video(vid_enc)