vae.py 48.4 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.

import torch
PengGao's avatar
PengGao committed
4
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
5
6
7
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
root's avatar
root committed
8
from loguru import logger
helloyongyang's avatar
helloyongyang committed
9

gushiqiao's avatar
gushiqiao committed
10
from lightx2v.utils.utils import load_weights
11

helloyongyang's avatar
helloyongyang committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
__all__ = [
    "WanVAE",
]

CACHE_T = 2


class CausalConv3d(nn.Conv3d):
    """
    Causal 3d convolusion.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._padding = (
            self.padding[2],
            self.padding[2],
            self.padding[1],
            self.padding[1],
            2 * self.padding[0],
            0,
        )
        self.padding = (0, 0, 0)

    def forward(self, x, cache_x=None):
        padding = list(self._padding)
        if cache_x is not None and self._padding[4] > 0:
            cache_x = cache_x.to(x.device)
            x = torch.cat([cache_x, x], dim=2)
            padding[4] -= cache_x.shape[2]
        x = F.pad(x, padding)

        return super().forward(x)


class RMS_norm(nn.Module):
    def __init__(self, dim, channel_first=True, images=True, bias=False):
        super().__init__()
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)

        self.channel_first = channel_first
        self.scale = dim**0.5
        self.gamma = nn.Parameter(torch.ones(shape))
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0

    def forward(self, x):
Dongz's avatar
Dongz committed
59
        return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
helloyongyang's avatar
helloyongyang committed
60
61
62
63
64
65
66


class Upsample(nn.Upsample):
    def forward(self, x):
        """
        Fix bfloat16 support for nearest neighbor interpolation.
        """
67
        return super().forward(x)
helloyongyang's avatar
helloyongyang committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


class Resample(nn.Module):
    def __init__(self, dim, mode):
        assert mode in (
            "none",
            "upsample2d",
            "upsample3d",
            "downsample2d",
            "downsample3d",
        )
        super().__init__()
        self.dim = dim
        self.mode = mode

        # layers
        if mode == "upsample2d":
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
                nn.Conv2d(dim, dim // 2, 3, padding=1),
            )
        elif mode == "upsample3d":
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
                nn.Conv2d(dim, dim // 2, 3, padding=1),
            )
            self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))

        elif mode == "downsample2d":
Dongz's avatar
Dongz committed
97
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
helloyongyang's avatar
helloyongyang committed
98
        elif mode == "downsample3d":
Dongz's avatar
Dongz committed
99
100
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
            self.time_conv = CausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
helloyongyang's avatar
helloyongyang committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114

        else:
            self.resample = nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        b, c, t, h, w = x.size()
        if self.mode == "upsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = "Rep"
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -CACHE_T:, :, :].clone()
Dongz's avatar
Dongz committed
115
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
helloyongyang's avatar
helloyongyang committed
116
117
118
                        # cache last frame of last two chunk
                        cache_x = torch.cat(
                            [
Dongz's avatar
Dongz committed
119
                                feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
120
121
122
123
                                cache_x,
                            ],
                            dim=2,
                        )
Dongz's avatar
Dongz committed
124
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
helloyongyang's avatar
helloyongyang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
                        cache_x = torch.cat(
                            [torch.zeros_like(cache_x).to(cache_x.device), cache_x],
                            dim=2,
                        )
                    if feat_cache[idx] == "Rep":
                        x = self.time_conv(x)
                    else:
                        x = self.time_conv(x, feat_cache[idx])
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1

                    x = x.reshape(b, 2, c, t, h, w)
                    x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
                    x = x.reshape(b, c, t * 2, h, w)
        t = x.shape[2]
        x = rearrange(x, "b c t h w -> (b t) c h w")
        x = self.resample(x)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=t)

        if self.mode == "downsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = x.clone()
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -1:, :, :].clone()
                    # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
                    #     # cache last frame of last two chunk
                    #     cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)

Dongz's avatar
Dongz committed
156
                    x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
helloyongyang's avatar
helloyongyang committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1
        return x

    def init_weight(self, conv):
        conv_weight = conv.weight
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        one_matrix = torch.eye(c1, c2)
        init_matrix = one_matrix
        nn.init.zeros_(conv_weight)
        # conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
        conv_weight.data[:, :, 1, 0, 0] = init_matrix  # * 0.5
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def init_weight2(self, conv):
        conv_weight = conv.weight.data
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        init_matrix = torch.eye(c1 // 2, c2)
        # init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
        conv_weight[: c1 // 2, :, -1, 0, 0] = init_matrix
        conv_weight[c1 // 2 :, :, -1, 0, 0] = init_matrix
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)


class ResidualBlock(nn.Module):
    def __init__(self, in_dim, out_dim, dropout=0.0):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim

        # layers
        self.residual = nn.Sequential(
            RMS_norm(in_dim, images=False),
            nn.SiLU(),
            CausalConv3d(in_dim, out_dim, 3, padding=1),
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            nn.Dropout(dropout),
            CausalConv3d(out_dim, out_dim, 3, padding=1),
        )
Dongz's avatar
Dongz committed
201
        self.shortcut = CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
helloyongyang's avatar
helloyongyang committed
202
203
204
205
206
207
208
209
210
211
212

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        h = self.shortcut(x)
        for layer in self.residual:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
213
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x + h


class AttentionBlock(nn.Module):
    """
    Causal self-attention with a single head.
    """

    def __init__(self, dim):
        super().__init__()
        self.dim = dim

        # layers
        self.norm = RMS_norm(dim)
        self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
        self.proj = nn.Conv2d(dim, dim, 1)

        # zero out the last layer params
        nn.init.zeros_(self.proj.weight)

    def forward(self, x):
        identity = x
        b, c, t, h, w = x.size()
        x = rearrange(x, "b c t h w -> (b t) c h w")
        x = self.norm(x)
        # compute query, key, value
Dongz's avatar
Dongz committed
249
        q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1)
helloyongyang's avatar
helloyongyang committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

        # apply attention
        x = F.scaled_dot_product_attention(
            q,
            k,
            v,
        )
        x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)

        # output
        x = self.proj(x)
        x = rearrange(x, "(b t) c h w-> b c t h w", t=t)
        return x + identity


class Encoder3d(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[True, True, False],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample

        # dimensions
        dims = [dim * u for u in [1] + dim_mult]
        scale = 1.0

        # init block
        self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)

        # downsample blocks
        downsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            for _ in range(num_res_blocks):
                downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    downsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # downsample block
            if i != len(dim_mult) - 1:
                mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
                downsamples.append(Resample(out_dim, mode=mode))
                scale /= 2.0
        self.downsamples = nn.Sequential(*downsamples)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(out_dim, out_dim, dropout),
            AttentionBlock(out_dim),
            ResidualBlock(out_dim, out_dim, dropout),
        )

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            CausalConv3d(out_dim, z_dim, 3, padding=1),
        )

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat(
                    [
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
                        cache_x,
                    ],
                    dim=2,
                )
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## downsamples
        for layer in self.downsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
364
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


class Decoder3d(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_upsample=[False, True, True],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_upsample = temperal_upsample

        # dimensions
        dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
        scale = 1.0 / 2 ** (len(dim_mult) - 2)

        # init block
        self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(dims[0], dims[0], dropout),
            AttentionBlock(dims[0]),
            ResidualBlock(dims[0], dims[0], dropout),
        )

        # upsample blocks
        upsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            if i == 1 or i == 2 or i == 3:
                in_dim = in_dim // 2
            for _ in range(num_res_blocks + 1):
                upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    upsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # upsample block
            if i != len(dim_mult) - 1:
                mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
                upsamples.append(Resample(out_dim, mode=mode))
                scale *= 2.0
        self.upsamples = nn.Sequential(*upsamples)

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False),
            nn.SiLU(),
            CausalConv3d(out_dim, 3, 3, padding=1),
        )

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        ## conv1
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat(
                    [
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
                        cache_x,
                    ],
                    dim=2,
                )
            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        ## middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## upsamples
        for layer in self.upsamples:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat(
                        [
Dongz's avatar
Dongz committed
479
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device),
helloyongyang's avatar
helloyongyang committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
                            cache_x,
                        ],
                        dim=2,
                    )
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x


def count_conv3d(model):
    count = 0
    for m in model.modules():
        if isinstance(m, CausalConv3d):
            count += 1
    return count


class WanVAE_(nn.Module):
    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[True, True, False],
        dropout=0.0,
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample
        self.temperal_upsample = temperal_downsample[::-1]
519
        self.spatial_compression_ratio = 2 ** len(self.temperal_downsample)
helloyongyang's avatar
helloyongyang committed
520

521
522
523
524
525
526
527
        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 256
        self.tile_sample_min_width = 256

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 192
        self.tile_sample_stride_width = 192
helloyongyang's avatar
helloyongyang committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        # modules
        self.encoder = Encoder3d(
            dim,
            z_dim * 2,
            dim_mult,
            num_res_blocks,
            attn_scales,
            self.temperal_downsample,
            dropout,
        )
        self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
        self.conv2 = CausalConv3d(z_dim, z_dim, 1)
        self.decoder = Decoder3d(
            dim,
            z_dim,
            dim_mult,
            num_res_blocks,
            attn_scales,
            self.temperal_upsample,
            dropout,
        )

    def forward(self, x):
        mu, log_var = self.encode(x)
        z = self.reparameterize(mu, log_var)
        x_recon = self.decode(z)
        return x_recon, mu, log_var

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    def blend_v(self, a, b, blend_extent):
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
        return b

    def blend_h(self, a, b, blend_extent):
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
        return b

    def tiled_encode(self, x, scale):
        _, _, num_frames, height, width = x.shape
        latent_height = height // self.spatial_compression_ratio
        latent_width = width // self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = tile_latent_min_height - tile_latent_stride_height
        blend_width = tile_latent_min_width - tile_latent_stride_width

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, self.tile_sample_stride_height):
            row = []
            for j in range(0, width, self.tile_sample_stride_width):
                self.clear_cache()
                time = []
                frame_range = 1 + (num_frames - 1) // 4
                for k in range(frame_range):
                    self._enc_conv_idx = [0]
                    if k == 0:
                        tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                    else:
                        tile = x[
                            :,
                            :,
                            1 + 4 * (k - 1) : 1 + 4 * k,
                            i : i + self.tile_sample_min_height,
                            j : j + self.tile_sample_min_width,
                        ]
                    tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
                    mu, log_var = self.conv1(tile).chunk(2, dim=1)
                    if isinstance(scale[0], torch.Tensor):
                        mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
                    else:
                        mu = (mu - scale[0]) * scale[1]

                    time.append(mu)

                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
        return enc

    def tiled_decode(self, z, scale):
        if isinstance(scale[0], torch.Tensor):
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
        else:
            z = z / scale[1] + scale[0]

        _, _, num_frames, height, width = z.shape
        sample_height = height * self.spatial_compression_ratio
        sample_width = width * self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
        blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, tile_latent_stride_height):
            row = []
            for j in range(0, width, tile_latent_stride_width):
                self.clear_cache()
                time = []
                for k in range(num_frames):
                    self._conv_idx = [0]
                    tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
                    tile = self.conv2(tile)
                    decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx)
                    time.append(decoded)
                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]

        return dec

helloyongyang's avatar
helloyongyang committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    def encode(self, x, scale):
        self.clear_cache()
        ## cache
        t = x.shape[2]
        iter_ = 1 + (t - 1) // 4
        for i in range(iter_):
            self._enc_conv_idx = [0]
            if i == 0:
                out = self.encoder(
                    x[:, :, :1, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
            else:
                out_ = self.encoder(
                    x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
                out = torch.cat([out, out_], 2)
        mu, log_var = self.conv1(out).chunk(2, dim=1)
        if isinstance(scale[0], torch.Tensor):
Dongz's avatar
Dongz committed
706
            mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1)
helloyongyang's avatar
helloyongyang committed
707
708
        else:
            mu = (mu - scale[0]) * scale[1]
709

helloyongyang's avatar
helloyongyang committed
710
711
712
713
714
        self.clear_cache()
        return mu

    def decode(self, z, scale):
        self.clear_cache()
715

helloyongyang's avatar
helloyongyang committed
716
717
        # z: [b,c,t,h,w]
        if isinstance(scale[0], torch.Tensor):
Dongz's avatar
Dongz committed
718
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1)
helloyongyang's avatar
helloyongyang committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
        else:
            z = z / scale[1] + scale[0]
        iter_ = z.shape[2]
        x = self.conv2(z)
        for i in range(iter_):
            self._conv_idx = [0]
            if i == 0:
                out = self.decoder(
                    x[:, :, i : i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx,
                )
            else:
                out_ = self.decoder(
                    x[:, :, i : i + 1, :, :],
                    feat_cache=self._feat_map,
                    feat_idx=self._conv_idx,
                )
                out = torch.cat([out, out_], 2)
738

helloyongyang's avatar
helloyongyang committed
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        self.clear_cache()
        return out

    def reparameterize(self, mu, log_var):
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return eps * std + mu

    def sample(self, imgs, deterministic=False):
        mu, log_var = self.encode(imgs)
        if deterministic:
            return mu
        std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
        return mu + std * torch.randn_like(std)

    def clear_cache(self):
        self._conv_num = count_conv3d(self.decoder)
        self._conv_idx = [0]
        self._feat_map = [None] * self._conv_num
        # cache encode
        self._enc_conv_num = count_conv3d(self.encoder)
        self._enc_conv_idx = [0]
        self._enc_feat_map = [None] * self._enc_conv_num


764
def _video_vae(pretrained_path=None, z_dim=None, device="cpu", cpu_offload=False, dtype=torch.float, **kwargs):
helloyongyang's avatar
helloyongyang committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
    """
    Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
    """
    # params
    cfg = dict(
        dim=96,
        z_dim=z_dim,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[False, True, True],
        dropout=0.0,
    )
    cfg.update(**kwargs)

    # init model
    with torch.device("meta"):
        model = WanVAE_(**cfg)

    # load checkpoint
gushiqiao's avatar
gushiqiao committed
785
    weights_dict = load_weights(pretrained_path, cpu_offload=cpu_offload)
786
787
788
    for k in weights_dict.keys():
        if weights_dict[k].dtype != dtype:
            weights_dict[k] = weights_dict[k].to(dtype)
789
    model.load_state_dict(weights_dict, assign=True)
helloyongyang's avatar
helloyongyang committed
790
791
792
793
794
795
796
797
798
799
800

    return model


class WanVAE:
    def __init__(
        self,
        z_dim=16,
        vae_pth="cache/vae_step_411000.pth",
        dtype=torch.float,
        device="cuda",
Xinchi Huang's avatar
Xinchi Huang committed
801
        parallel=False,
802
        use_tiling=False,
803
        cpu_offload=False,
804
        use_2d_split=True,
helloyongyang's avatar
helloyongyang committed
805
806
807
    ):
        self.dtype = dtype
        self.device = device
Xinchi Huang's avatar
Xinchi Huang committed
808
        self.parallel = parallel
809
        self.use_tiling = use_tiling
810
        self.cpu_offload = cpu_offload
811
        self.use_2d_split = use_2d_split
helloyongyang's avatar
helloyongyang committed
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

        mean = [
            -0.7571,
            -0.7089,
            -0.9113,
            0.1075,
            -0.1745,
            0.9653,
            -0.1517,
            1.5508,
            0.4134,
            -0.0715,
            0.5517,
            -0.3632,
            -0.1922,
            -0.9497,
            0.2503,
            -0.2921,
        ]
        std = [
            2.8184,
            1.4541,
            2.3275,
            2.6558,
            1.2196,
            1.7708,
            2.6052,
            2.0743,
            3.2687,
            2.1526,
            2.8652,
            1.5579,
            1.6382,
            1.1253,
            2.8251,
            1.9160,
        ]
        self.mean = torch.tensor(mean, dtype=dtype, device=device)
TorynCurtis's avatar
TorynCurtis committed
850
851
        self.inv_std = 1.0 / torch.tensor(std, dtype=dtype, device=device)
        self.scale = [self.mean, self.inv_std]
helloyongyang's avatar
helloyongyang committed
852

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
        # (height, width, world_size) -> (world_size_h, world_size_w)
        self.grid_table = {
            # world_size = 2
            (60, 104, 2): (1, 2),
            (68, 120, 2): (1, 2),
            (90, 160, 2): (1, 2),
            (60, 60, 2): (1, 2),
            (72, 72, 2): (1, 2),
            (88, 88, 2): (1, 2),
            (120, 120, 2): (1, 2),
            (104, 60, 2): (2, 1),
            (120, 68, 2): (2, 1),
            (160, 90, 2): (2, 1),
            # world_size = 4
            (60, 104, 4): (2, 2),
            (68, 120, 4): (2, 2),
            (90, 160, 4): (2, 2),
            (60, 60, 4): (2, 2),
            (72, 72, 4): (2, 2),
            (88, 88, 4): (2, 2),
            (120, 120, 4): (2, 2),
            (104, 60, 4): (2, 2),
            (120, 68, 4): (2, 2),
            (160, 90, 4): (2, 2),
            # world_size = 8
            (60, 104, 8): (2, 4),
            (68, 120, 8): (2, 4),
            (90, 160, 8): (2, 4),
            (60, 60, 8): (2, 4),
            (72, 72, 8): (2, 4),
            (88, 88, 8): (2, 4),
            (120, 120, 8): (2, 4),
            (104, 60, 8): (4, 2),
            (120, 68, 8): (4, 2),
            (160, 90, 8): (4, 2),
        }

helloyongyang's avatar
helloyongyang committed
890
        # init model
891
        self.model = _video_vae(pretrained_path=vae_pth, z_dim=z_dim, cpu_offload=cpu_offload, dtype=dtype).eval().requires_grad_(False).to(device).to(dtype)
helloyongyang's avatar
helloyongyang committed
892

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    def _calculate_2d_grid(self, latent_height, latent_width, world_size):
        if (latent_height, latent_width, world_size) in self.grid_table:
            best_h, best_w = self.grid_table[(latent_height, latent_width, world_size)]
            logger.info(f"Vae using cached 2D grid: {best_h}x{best_w} grid for {latent_height}x{latent_width} latent")
            return best_h, best_w

        best_h, best_w = 1, world_size
        min_aspect_diff = float("inf")

        for h in range(1, world_size + 1):
            if world_size % h == 0:
                w = world_size // h
                if latent_height % h == 0 and latent_width % w == 0:
                    # Calculate how close this grid is to square
                    aspect_diff = abs((latent_height / h) - (latent_width / w))
                    if aspect_diff < min_aspect_diff:
                        min_aspect_diff = aspect_diff
                        best_h, best_w = h, w
        logger.info(f"Vae using 2D grid & Update cache: {best_h}x{best_w} grid for {latent_height}x{latent_width} latent")
        self.grid_table[(latent_height, latent_width, world_size)] = (best_h, best_w)
        return best_h, best_w

wangshankun's avatar
wangshankun committed
915
916
917
    def current_device(self):
        return next(self.model.parameters()).device

TorynCurtis's avatar
TorynCurtis committed
918
    def to_cpu(self):
wangshankun's avatar
wangshankun committed
919
920
        self.model.encoder = self.model.encoder.to("cpu")
        self.model.decoder = self.model.decoder.to("cpu")
TorynCurtis's avatar
TorynCurtis committed
921
922
923
924
925
926
        self.model = self.model.to("cpu")
        self.mean = self.mean.cpu()
        self.inv_std = self.inv_std.cpu()
        self.scale = [self.mean, self.inv_std]

    def to_cuda(self):
wangshankun's avatar
wangshankun committed
927
928
        self.model.encoder = self.model.encoder.to("cuda")
        self.model.decoder = self.model.decoder.to("cuda")
TorynCurtis's avatar
TorynCurtis committed
929
930
931
932
933
        self.model = self.model.to("cuda")
        self.mean = self.mean.cuda()
        self.inv_std = self.inv_std.cuda()
        self.scale = [self.mean, self.inv_std]

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
    def encode_dist(self, video, world_size, cur_rank, split_dim):
        spatial_ratio = 8

        if split_dim == 3:
            total_latent_len = video.shape[3] // spatial_ratio
        elif split_dim == 4:
            total_latent_len = video.shape[4] // spatial_ratio
        else:
            raise ValueError(f"Unsupported split_dim: {split_dim}")

        splited_chunk_len = total_latent_len // world_size
        padding_size = 1

        video_chunk_len = splited_chunk_len * spatial_ratio
        video_padding_len = padding_size * spatial_ratio

        if cur_rank == 0:
            if split_dim == 3:
                video_chunk = video[:, :, :, : video_chunk_len + 2 * video_padding_len, :].contiguous()
            elif split_dim == 4:
                video_chunk = video[:, :, :, :, : video_chunk_len + 2 * video_padding_len].contiguous()
        elif cur_rank == world_size - 1:
            if split_dim == 3:
                video_chunk = video[:, :, :, -(video_chunk_len + 2 * video_padding_len) :, :].contiguous()
            elif split_dim == 4:
                video_chunk = video[:, :, :, :, -(video_chunk_len + 2 * video_padding_len) :].contiguous()
        else:
            start_idx = cur_rank * video_chunk_len - video_padding_len
            end_idx = (cur_rank + 1) * video_chunk_len + video_padding_len
            if split_dim == 3:
                video_chunk = video[:, :, :, start_idx:end_idx, :].contiguous()
            elif split_dim == 4:
                video_chunk = video[:, :, :, :, start_idx:end_idx].contiguous()

        if self.use_tiling:
969
            encoded_chunk = self.model.tiled_encode(video_chunk, self.scale)
970
        else:
971
            encoded_chunk = self.model.encode(video_chunk, self.scale)
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

        if cur_rank == 0:
            if split_dim == 3:
                encoded_chunk = encoded_chunk[:, :, :, :splited_chunk_len, :].contiguous()
            elif split_dim == 4:
                encoded_chunk = encoded_chunk[:, :, :, :, :splited_chunk_len].contiguous()
        elif cur_rank == world_size - 1:
            if split_dim == 3:
                encoded_chunk = encoded_chunk[:, :, :, -splited_chunk_len:, :].contiguous()
            elif split_dim == 4:
                encoded_chunk = encoded_chunk[:, :, :, :, -splited_chunk_len:].contiguous()
        else:
            if split_dim == 3:
                encoded_chunk = encoded_chunk[:, :, :, padding_size:-padding_size, :].contiguous()
            elif split_dim == 4:
                encoded_chunk = encoded_chunk[:, :, :, :, padding_size:-padding_size].contiguous()

        full_encoded = [torch.empty_like(encoded_chunk) for _ in range(world_size)]
        dist.all_gather(full_encoded, encoded_chunk)

        torch.cuda.synchronize()

        encoded = torch.cat(full_encoded, dim=split_dim)

        return encoded.squeeze(0)

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
    def encode_dist_2d(self, video, world_size_h, world_size_w, cur_rank_h, cur_rank_w):
        spatial_ratio = 8

        # Calculate chunk sizes for both dimensions
        total_latent_h = video.shape[3] // spatial_ratio
        total_latent_w = video.shape[4] // spatial_ratio

        chunk_h = total_latent_h // world_size_h
        chunk_w = total_latent_w // world_size_w

        padding_size = 1
        video_chunk_h = chunk_h * spatial_ratio
        video_chunk_w = chunk_w * spatial_ratio
        video_padding_h = padding_size * spatial_ratio
        video_padding_w = padding_size * spatial_ratio

        # Calculate H dimension slice
        if cur_rank_h == 0:
            h_start = 0
            h_end = video_chunk_h + 2 * video_padding_h
        elif cur_rank_h == world_size_h - 1:
            h_start = video.shape[3] - (video_chunk_h + 2 * video_padding_h)
            h_end = video.shape[3]
        else:
            h_start = cur_rank_h * video_chunk_h - video_padding_h
            h_end = (cur_rank_h + 1) * video_chunk_h + video_padding_h

        # Calculate W dimension slice
        if cur_rank_w == 0:
            w_start = 0
            w_end = video_chunk_w + 2 * video_padding_w
        elif cur_rank_w == world_size_w - 1:
            w_start = video.shape[4] - (video_chunk_w + 2 * video_padding_w)
            w_end = video.shape[4]
        else:
            w_start = cur_rank_w * video_chunk_w - video_padding_w
            w_end = (cur_rank_w + 1) * video_chunk_w + video_padding_w

        # Extract the video chunk for this process
        video_chunk = video[:, :, :, h_start:h_end, w_start:w_end].contiguous()

        # Encode the chunk
        if self.use_tiling:
            encoded_chunk = self.model.tiled_encode(video_chunk, self.scale)
        else:
            encoded_chunk = self.model.encode(video_chunk, self.scale)

        # Remove padding from encoded chunk
        if cur_rank_h == 0:
            encoded_h_start = 0
            encoded_h_end = chunk_h
        elif cur_rank_h == world_size_h - 1:
            encoded_h_start = encoded_chunk.shape[3] - chunk_h
            encoded_h_end = encoded_chunk.shape[3]
        else:
            encoded_h_start = padding_size
            encoded_h_end = encoded_chunk.shape[3] - padding_size

        if cur_rank_w == 0:
            encoded_w_start = 0
            encoded_w_end = chunk_w
        elif cur_rank_w == world_size_w - 1:
            encoded_w_start = encoded_chunk.shape[4] - chunk_w
            encoded_w_end = encoded_chunk.shape[4]
        else:
            encoded_w_start = padding_size
            encoded_w_end = encoded_chunk.shape[4] - padding_size

        encoded_chunk = encoded_chunk[:, :, :, encoded_h_start:encoded_h_end, encoded_w_start:encoded_w_end].contiguous()

        # Gather all chunks
        total_processes = world_size_h * world_size_w
        full_encoded = [torch.empty_like(encoded_chunk) for _ in range(total_processes)]

        dist.all_gather(full_encoded, encoded_chunk)

        torch.cuda.synchronize()

        # Reconstruct the full encoded tensor
        encoded_rows = []
        for h_idx in range(world_size_h):
            encoded_cols = []
            for w_idx in range(world_size_w):
                process_idx = h_idx * world_size_w + w_idx
                encoded_cols.append(full_encoded[process_idx])
            encoded_rows.append(torch.cat(encoded_cols, dim=4))

        encoded = torch.cat(encoded_rows, dim=3)

        return encoded.squeeze(0)

sandy's avatar
sandy committed
1089
    def encode(self, video):
helloyongyang's avatar
helloyongyang committed
1090
        """
sandy's avatar
sandy committed
1091
        video: one video  with shape [1, C, T, H, W].
helloyongyang's avatar
helloyongyang committed
1092
        """
1093
        if self.cpu_offload:
gushiqiao's avatar
gushiqiao committed
1094
1095
            self.to_cuda()

1096
1097
1098
1099
1100
        if self.parallel:
            world_size = dist.get_world_size()
            cur_rank = dist.get_rank()
            height, width = video.shape[3], video.shape[4]

1101
1102
1103
1104
1105
            if self.use_2d_split:
                world_size_h, world_size_w = self._calculate_2d_grid(height // 8, width // 8, world_size)
                cur_rank_h = cur_rank // world_size_w
                cur_rank_w = cur_rank % world_size_w
                out = self.encode_dist_2d(video, world_size_h, world_size_w, cur_rank_h, cur_rank_w)
1106
            else:
1107
1108
1109
1110
1111
                # Original 1D splitting logic
                if width % world_size == 0:
                    out = self.encode_dist(video, world_size, cur_rank, split_dim=4)
                elif height % world_size == 0:
                    out = self.encode_dist(video, world_size, cur_rank, split_dim=3)
1112
                else:
1113
1114
1115
1116
1117
                    logger.info("Fall back to naive encode mode")
                    if self.use_tiling:
                        out = self.model.tiled_encode(video, self.scale).squeeze(0)
                    else:
                        out = self.model.encode(video, self.scale).squeeze(0)
1118
        else:
1119
            if self.use_tiling:
1120
                out = self.model.tiled_encode(video, self.scale).squeeze(0)
1121
            else:
1122
                out = self.model.encode(video, self.scale).squeeze(0)
gushiqiao's avatar
gushiqiao committed
1123

1124
        if self.cpu_offload:
gushiqiao's avatar
gushiqiao committed
1125
1126
            self.to_cpu()
        return out
Dongz's avatar
Dongz committed
1127

Xinchi Huang's avatar
Xinchi Huang committed
1128
1129
1130
1131
1132
1133
1134
    def decode_dist(self, zs, world_size, cur_rank, split_dim):
        splited_total_len = zs.shape[split_dim]
        splited_chunk_len = splited_total_len // world_size
        padding_size = 1

        if cur_rank == 0:
            if split_dim == 2:
Dongz's avatar
Dongz committed
1135
                zs = zs[:, :, : splited_chunk_len + 2 * padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1136
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1137
1138
                zs = zs[:, :, :, : splited_chunk_len + 2 * padding_size].contiguous()
        elif cur_rank == world_size - 1:
Xinchi Huang's avatar
Xinchi Huang committed
1139
            if split_dim == 2:
Dongz's avatar
Dongz committed
1140
                zs = zs[:, :, -(splited_chunk_len + 2 * padding_size) :, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1141
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1142
                zs = zs[:, :, :, -(splited_chunk_len + 2 * padding_size) :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1143
1144
        else:
            if split_dim == 2:
Dongz's avatar
Dongz committed
1145
                zs = zs[:, :, cur_rank * splited_chunk_len - padding_size : (cur_rank + 1) * splited_chunk_len + padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1146
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1147
                zs = zs[:, :, :, cur_rank * splited_chunk_len - padding_size : (cur_rank + 1) * splited_chunk_len + padding_size].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1148

1149
        decode_func = self.model.tiled_decode if self.use_tiling else self.model.decode
1150
        images = decode_func(zs.unsqueeze(0), self.scale).clamp_(-1, 1)
Xinchi Huang's avatar
Xinchi Huang committed
1151
1152
1153

        if cur_rank == 0:
            if split_dim == 2:
Dongz's avatar
Dongz committed
1154
                images = images[:, :, :, : splited_chunk_len * 8, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1155
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1156
1157
                images = images[:, :, :, :, : splited_chunk_len * 8].contiguous()
        elif cur_rank == world_size - 1:
Xinchi Huang's avatar
Xinchi Huang committed
1158
            if split_dim == 2:
Dongz's avatar
Dongz committed
1159
                images = images[:, :, :, -splited_chunk_len * 8 :, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1160
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1161
                images = images[:, :, :, :, -splited_chunk_len * 8 :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1162
1163
        else:
            if split_dim == 2:
Dongz's avatar
Dongz committed
1164
                images = images[:, :, :, 8 * padding_size : -8 * padding_size, :].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1165
            elif split_dim == 3:
Dongz's avatar
Dongz committed
1166
                images = images[:, :, :, :, 8 * padding_size : -8 * padding_size].contiguous()
Xinchi Huang's avatar
Xinchi Huang committed
1167
1168
1169
1170
1171
1172

        full_images = [torch.empty_like(images) for _ in range(world_size)]
        dist.all_gather(full_images, images)

        torch.cuda.synchronize()

1173
        images = torch.cat(full_images, dim=split_dim + 1)
Xinchi Huang's avatar
Xinchi Huang committed
1174
1175

        return images
helloyongyang's avatar
helloyongyang committed
1176

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
    def decode_dist_2d(self, zs, world_size_h, world_size_w, cur_rank_h, cur_rank_w):
        total_h = zs.shape[2]
        total_w = zs.shape[3]

        chunk_h = total_h // world_size_h
        chunk_w = total_w // world_size_w

        padding_size = 1

        # Calculate H dimension slice
        if cur_rank_h == 0:
            h_start = 0
            h_end = chunk_h + 2 * padding_size
        elif cur_rank_h == world_size_h - 1:
            h_start = total_h - (chunk_h + 2 * padding_size)
            h_end = total_h
        else:
            h_start = cur_rank_h * chunk_h - padding_size
            h_end = (cur_rank_h + 1) * chunk_h + padding_size

        # Calculate W dimension slice
        if cur_rank_w == 0:
            w_start = 0
            w_end = chunk_w + 2 * padding_size
        elif cur_rank_w == world_size_w - 1:
            w_start = total_w - (chunk_w + 2 * padding_size)
            w_end = total_w
        else:
            w_start = cur_rank_w * chunk_w - padding_size
            w_end = (cur_rank_w + 1) * chunk_w + padding_size

        # Extract the latent chunk for this process
        zs_chunk = zs[:, :, h_start:h_end, w_start:w_end].contiguous()

        # Decode the chunk
        decode_func = self.model.tiled_decode if self.use_tiling else self.model.decode
        images_chunk = decode_func(zs_chunk.unsqueeze(0), self.scale).clamp_(-1, 1)

        # Remove padding from decoded chunk
        spatial_ratio = 8
        if cur_rank_h == 0:
            decoded_h_start = 0
            decoded_h_end = chunk_h * spatial_ratio
        elif cur_rank_h == world_size_h - 1:
            decoded_h_start = images_chunk.shape[3] - chunk_h * spatial_ratio
            decoded_h_end = images_chunk.shape[3]
        else:
            decoded_h_start = padding_size * spatial_ratio
            decoded_h_end = images_chunk.shape[3] - padding_size * spatial_ratio

        if cur_rank_w == 0:
            decoded_w_start = 0
            decoded_w_end = chunk_w * spatial_ratio
        elif cur_rank_w == world_size_w - 1:
            decoded_w_start = images_chunk.shape[4] - chunk_w * spatial_ratio
            decoded_w_end = images_chunk.shape[4]
        else:
            decoded_w_start = padding_size * spatial_ratio
            decoded_w_end = images_chunk.shape[4] - padding_size * spatial_ratio

        images_chunk = images_chunk[:, :, :, decoded_h_start:decoded_h_end, decoded_w_start:decoded_w_end].contiguous()

        # Gather all chunks
        total_processes = world_size_h * world_size_w
        full_images = [torch.empty_like(images_chunk) for _ in range(total_processes)]

        dist.all_gather(full_images, images_chunk)

        torch.cuda.synchronize()

        # Reconstruct the full image tensor
        image_rows = []
        for h_idx in range(world_size_h):
            image_cols = []
            for w_idx in range(world_size_w):
                process_idx = h_idx * world_size_w + w_idx
                image_cols.append(full_images[process_idx])
            image_rows.append(torch.cat(image_cols, dim=4))

        images = torch.cat(image_rows, dim=3)

        return images

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
1260
    def decode(self, zs):
1261
        if self.cpu_offload:
TorynCurtis's avatar
TorynCurtis committed
1262
1263
            self.to_cuda()

1264
        if self.parallel:
Xinchi Huang's avatar
Xinchi Huang committed
1265
1266
            world_size = dist.get_world_size()
            cur_rank = dist.get_rank()
1267
            latent_height, latent_width = zs.shape[2], zs.shape[3]
1268

1269
1270
1271
1272
1273
            if self.use_2d_split:
                world_size_h, world_size_w = self._calculate_2d_grid(latent_height, latent_width, world_size)
                cur_rank_h = cur_rank // world_size_w
                cur_rank_w = cur_rank % world_size_w
                images = self.decode_dist_2d(zs, world_size_h, world_size_w, cur_rank_h, cur_rank_w)
Xinchi Huang's avatar
Xinchi Huang committed
1274
            else:
1275
1276
1277
1278
1279
1280
1281
1282
                # Original 1D splitting logic
                if latent_width % world_size == 0:
                    images = self.decode_dist(zs, world_size, cur_rank, split_dim=3)
                elif latent_height % world_size == 0:
                    images = self.decode_dist(zs, world_size, cur_rank, split_dim=2)
                else:
                    logger.info("Fall back to naive decode mode")
                    images = self.model.decode(zs.unsqueeze(0), self.scale).clamp_(-1, 1)
Xinchi Huang's avatar
Xinchi Huang committed
1283
        else:
1284
            decode_func = self.model.tiled_decode if self.use_tiling else self.model.decode
1285
            images = decode_func(zs.unsqueeze(0), self.scale).clamp_(-1, 1)
TorynCurtis's avatar
TorynCurtis committed
1286

1287
        if self.cpu_offload:
1288
            images = images.cpu()
TorynCurtis's avatar
TorynCurtis committed
1289
1290
            self.to_cpu()

Xinchi Huang's avatar
Xinchi Huang committed
1291
        return images
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323


if __name__ == "__main__":
    dist.init_process_group(backend="nccl")
    torch.cuda.set_device(dist.get_rank())

    # # Test both 1D and 2D splitting
    # print(f"Rank {dist.get_rank()}: Testing 1D splitting")
    # model_1d = WanVAE(vae_pth="/data/nvme0/models/Wan-AI/Wan2.1-I2V-14B-480P/Wan2.1_VAE.pth", dtype=torch.bfloat16, parallel=True, use_2d_split=False)
    # model_1d.to_cuda()

    input_tensor = torch.randn(1, 3, 17, 480, 480).to(torch.bfloat16).to("cuda")
    # encoded_tensor_1d = model_1d.encode(input_tensor)
    # print(f"rank {dist.get_rank()} 1D encoded_tensor shape: {encoded_tensor_1d.shape}")
    # decoded_tensor_1d = model_1d.decode(encoded_tensor_1d)
    # print(f"rank {dist.get_rank()} 1D decoded_tensor shape: {decoded_tensor_1d.shape}")

    print(f"Rank {dist.get_rank()}: Testing 2D splitting")
    model_2d = WanVAE(vae_pth="/data/nvme0/models/Wan-AI/Wan2.1-I2V-14B-480P/Wan2.1_VAE.pth", dtype=torch.bfloat16, parallel=True, use_2d_split=True)
    model_2d.to_cuda()

    encoded_tensor_2d = model_2d.encode(input_tensor)
    print(f"rank {dist.get_rank()} 2D encoded_tensor shape: {encoded_tensor_2d.shape}")
    decoded_tensor_2d = model_2d.decode(encoded_tensor_2d)
    print(f"rank {dist.get_rank()} 2D decoded_tensor shape: {decoded_tensor_2d.shape}")

    # # Verify that both methods produce the same results
    # if dist.get_rank() == 0:
    #     print(f"Encoded tensors match: {torch.allclose(encoded_tensor_1d, encoded_tensor_2d, atol=1e-5)}")
    #     print(f"Decoded tensors match: {torch.allclose(decoded_tensor_1d, decoded_tensor_2d, atol=1e-5)}")

    dist.destroy_process_group()