model.py 16.8 KB
Newer Older
1
import json
2
3
import os

helloyongyang's avatar
helloyongyang committed
4
import torch
5
import torch.distributed as dist
PengGao's avatar
PengGao committed
6
7
8
from loguru import logger
from safetensors import safe_open

helloyongyang's avatar
helloyongyang committed
9
from lightx2v.common.ops.attn import MaskMap
PengGao's avatar
PengGao committed
10
from lightx2v.models.networks.wan.infer.dist_infer.transformer_infer import WanTransformerDistInfer
11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
    WanTransformerInferFirstBlock,
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.post_weights import WanPostWeights
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
29
)
30
from lightx2v.utils.envs import *
31
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
32

33
34
35
36
37
try:
    import gguf
except ImportError:
    gguf = None

helloyongyang's avatar
helloyongyang committed
38
39
40
41
42
43

class WanModel:
    pre_weight_class = WanPreWeights
    post_weight_class = WanPostWeights
    transformer_weight_class = WanTransformerWeights

44
    def __init__(self, model_path, config, device, seq_p_group=None):
helloyongyang's avatar
helloyongyang committed
45
46
        self.model_path = model_path
        self.config = config
47
48
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
49
        self.seq_p_group = seq_p_group
50

gushiqiao's avatar
gushiqiao committed
51
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
52
        self.dit_quantized = self.config.mm_config.get("mm_type", "Default") != "Default"
53

gushiqiao's avatar
gushiqiao committed
54
55
        if self.dit_quantized:
            dit_quant_scheme = self.config.mm_config.get("mm_type").split("-")[1]
gushiqiao's avatar
gushiqiao committed
56
57
            if self.config.model_cls == "wan2.1_distill":
                dit_quant_scheme = "distill_" + dit_quant_scheme
58
59
60
61
            if dit_quant_scheme == "gguf":
                self.dit_quantized_ckpt = find_gguf_model_path(config, "dit_quantized_ckpt", subdir=dit_quant_scheme)
                self.config.use_gguf = True
            else:
helloyongyang's avatar
helloyongyang committed
62
                self.dit_quantized_ckpt = find_hf_model_path(config, self.model_path, "dit_quantized_ckpt", subdir=dit_quant_scheme)
gushiqiao's avatar
Fix bug  
gushiqiao committed
63
64
65
66
67
            quant_config_path = os.path.join(self.dit_quantized_ckpt, "config.json")
            if os.path.exists(quant_config_path):
                with open(quant_config_path, "r") as f:
                    quant_model_config = json.load(f)
                self.config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
68
69
        else:
            self.dit_quantized_ckpt = None
70
71
            assert not self.config.get("lazy_load", False)

gushiqiao's avatar
gushiqiao committed
72
        self.config.dit_quantized_ckpt = self.dit_quantized_ckpt
gushiqiao's avatar
gushiqiao committed
73

74
75
76
77
        self.weight_auto_quant = self.config.mm_config.get("weight_auto_quant", False)
        if self.dit_quantized:
            assert self.weight_auto_quant or self.dit_quantized_ckpt is not None

gushiqiao's avatar
gushiqiao committed
78
        self.device = device
helloyongyang's avatar
helloyongyang committed
79
80
81
82
83
84
85
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
wangshankun's avatar
wangshankun committed
86
        if self.seq_p_group is not None:
helloyongyang's avatar
helloyongyang committed
87
            self.transformer_infer_class = WanTransformerDistInfer
helloyongyang's avatar
helloyongyang committed
88
        else:
helloyongyang's avatar
helloyongyang committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            if self.config["feature_caching"] == "NoCaching":
                self.transformer_infer_class = WanTransformerInfer
            elif self.config["feature_caching"] == "Tea":
                self.transformer_infer_class = WanTransformerInferTeaCaching
            elif self.config["feature_caching"] == "TaylorSeer":
                self.transformer_infer_class = WanTransformerInferTaylorCaching
            elif self.config["feature_caching"] == "Ada":
                self.transformer_infer_class = WanTransformerInferAdaCaching
            elif self.config["feature_caching"] == "Custom":
                self.transformer_infer_class = WanTransformerInferCustomCaching
            elif self.config["feature_caching"] == "FirstBlock":
                self.transformer_infer_class = WanTransformerInferFirstBlock
            elif self.config["feature_caching"] == "DualBlock":
                self.transformer_infer_class = WanTransformerInferDualBlock
            elif self.config["feature_caching"] == "DynamicBlock":
                self.transformer_infer_class = WanTransformerInferDynamicBlock
            else:
                raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
107

gushiqiao's avatar
gushiqiao committed
108
109
110
111
112
113
114
115
116
117
118
119
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
            # Multi-GPU mode, only rank 0 loads
            if dist.get_rank() == 0:
                logger.info(f"Loading weights from {self.model_path}")
                return True
        return False

120
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
helloyongyang's avatar
helloyongyang committed
121
        with safe_open(file_path, framework="pt") as f:
122
123
124
125
            return {
                key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE())).pin_memory().to(self.device)
                for key in f.keys()
            }
helloyongyang's avatar
helloyongyang committed
126

127
    def _load_ckpt(self, unified_dtype, sensitive_layer):
helloyongyang's avatar
helloyongyang committed
128
        safetensors_path = find_hf_model_path(self.config, self.model_path, "dit_original_ckpt", subdir="original")
129
        safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
helloyongyang's avatar
helloyongyang committed
130
131
        weight_dict = {}
        for file_path in safetensors_files:
132
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
133
134
135
            weight_dict.update(file_weights)
        return weight_dict

136
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
137
        ckpt_path = self.dit_quantized_ckpt
138
        logger.info(f"Loading quant dit model from {ckpt_path}")
139

gushiqiao's avatar
Fix  
gushiqiao committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        index_files = [f for f in os.listdir(ckpt_path) if f.endswith(".index.json")]
        if not index_files:
            raise FileNotFoundError(f"No *.index.json found in {ckpt_path}")

        index_path = os.path.join(ckpt_path, index_files[0])
        logger.info(f" Using safetensors index: {index_path}")

        with open(index_path, "r") as f:
            index_data = json.load(f)

        weight_dict = {}
        for filename in set(index_data["weight_map"].values()):
            safetensor_path = os.path.join(ckpt_path, filename)
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
156
                    if f.get_tensor(k).dtype in [torch.float16, torch.bfloat16, torch.float]:
157
158
                        if unified_dtype or all(s not in k for s in sensitive_layer):
                            weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
159
                        else:
160
                            weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
161
162
                    else:
                        weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
163

164
165
        return weight_dict

166
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
167
        lazy_load_model_path = self.dit_quantized_ckpt
168
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
169
        pre_post_weight_dict = {}
170
171

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
172
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
173
            for k in f.keys():
174
                if f.get_tensor(k).dtype in [torch.float16, torch.bfloat16, torch.float]:
175
176
                    if unified_dtype or all(s not in k for s in sensitive_layer):
                        pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
177
                    else:
178
                        pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
179
180
                else:
                    pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
181

gushiqiao's avatar
gushiqiao committed
182
        return pre_post_weight_dict
183

184
185
186
187
188
189
190
191
    def _load_gguf_ckpt(self):
        gguf_path = self.dit_quantized_ckpt
        logger.info(f"Loading gguf-quant dit model from {gguf_path}")
        reader = gguf.GGUFReader(gguf_path)
        for tensor in reader.tensors:
            # TODO: implement _load_gguf_ckpt
            pass

lijiaqi2's avatar
lijiaqi2 committed
192
    def _init_weights(self, weight_dict=None):
193
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
194
        # Some layers run with float32 to achieve high accuracy
195
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
196
197
198
199
200
201
202
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
        }
203

lijiaqi2's avatar
lijiaqi2 committed
204
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
205
            is_weight_loader = self._should_load_weights()
206
207
            if is_weight_loader:
                if not self.dit_quantized or self.weight_auto_quant:
gushiqiao's avatar
gushiqiao committed
208
209
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
210
                else:
gushiqiao's avatar
gushiqiao committed
211
                    # Load quantized weights
212
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
213
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
214
                    else:
gushiqiao's avatar
gushiqiao committed
215
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
216

gushiqiao's avatar
gushiqiao committed
217
218
            if self.config.get("device_mesh") is not None:
                weight_dict = self._distribute_weights_multi_gpu(weight_dict, is_weight_loader)
219

gushiqiao's avatar
gushiqiao committed
220
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
221
222
        else:
            self.original_weight_dict = weight_dict
223

gushiqiao's avatar
gushiqiao committed
224
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
225
        self.pre_weight = self.pre_weight_class(self.config)
TorynCurtis's avatar
TorynCurtis committed
226
        self.post_weight = self.post_weight_class(self.config)
helloyongyang's avatar
helloyongyang committed
227
        self.transformer_weights = self.transformer_weight_class(self.config)
gushiqiao's avatar
gushiqiao committed
228
229

        # Load weights into containers
230
231
        self.pre_weight.load(self.original_weight_dict)
        self.post_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
232
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
233

234
235
236
        del self.original_weight_dict
        torch.cuda.empty_cache()

gushiqiao's avatar
gushiqiao committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    def _distribute_weights_multi_gpu(self, weight_dict, is_weight_loader):
        """Distribute weights across multiple GPUs or CPUs based on offload config."""
        global_src_rank = 0

        # Determine target device for distribution
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            # Create metadata for broadcasting
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            # Broadcast metadata to all ranks
            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            # Non-loader ranks receive metadata
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        # Create empty tensors on target device for all ranks
        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        # Synchronize before broadcasting
        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])
        else:
            dist.barrier()

        # Broadcast weights from rank 0 to all ranks
        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                # Copy weights to broadcast tensor
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

            # Broadcast to all ranks
            dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
283
284
285
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
wangshankun's avatar
wangshankun committed
286
287
288
289
290
291

        if self.seq_p_group is not None:
            self.transformer_infer = self.transformer_infer_class(self.config, self.seq_p_group)
        else:
            self.transformer_infer = self.transformer_infer_class(self.config)

292
        if self.config["cfg_parallel"]:
helloyongyang's avatar
helloyongyang committed
293
            self.infer_func = self.infer_with_cfg_parallel
294
        else:
helloyongyang's avatar
helloyongyang committed
295
            self.infer_func = self.infer_wo_cfg_parallel
helloyongyang's avatar
helloyongyang committed
296
297
298

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
299
300
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
301
302
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
303
304
305
306
307
308
309
310
311
312
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.post_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.post_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
313
314
315
316
    @torch.no_grad()
    def infer(self, inputs):
        return self.infer_func(inputs)

helloyongyang's avatar
helloyongyang committed
317
    @torch.no_grad()
318
    def infer_wo_cfg_parallel(self, inputs):
319
320
321
322
323
324
325
        if self.cpu_offload:
            if self.offload_granularity == "model" and self.scheduler.step_index == 0:
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
                self.post_weight.to_cuda()

326
327
328
329
330
        if self.transformer_infer.mask_map is None:
            _, c, h, w = self.scheduler.latents.shape
            video_token_num = c * (h // 2) * (w // 2)
            self.transformer_infer.mask_map = MaskMap(video_token_num, c)

331
        embed, grid_sizes, pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=True)
gushiqiao's avatar
Fix bug  
gushiqiao committed
332
        x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
Dongz's avatar
Dongz committed
333
        noise_pred_cond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes)[0]
helloyongyang's avatar
helloyongyang committed
334

root's avatar
root committed
335
        self.scheduler.noise_pred = noise_pred_cond
helloyongyang's avatar
helloyongyang committed
336

gushiqiao's avatar
gushiqiao committed
337
338
339
340
        if self.clean_cuda_cache:
            del x, embed, pre_infer_out, noise_pred_cond, grid_sizes
            torch.cuda.empty_cache()

341
        if self.config["enable_cfg"]:
root's avatar
root committed
342
            embed, grid_sizes, pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=False)
gushiqiao's avatar
Fix bug  
gushiqiao committed
343
            x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
root's avatar
root committed
344
            noise_pred_uncond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes)[0]
helloyongyang's avatar
helloyongyang committed
345

helloyongyang's avatar
helloyongyang committed
346
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (self.scheduler.noise_pred - noise_pred_uncond)
gushiqiao's avatar
gushiqiao committed
347

348
349
350
351
352
353
354
355
            if self.clean_cuda_cache:
                del x, embed, pre_infer_out, noise_pred_uncond, grid_sizes
                torch.cuda.empty_cache()

        if self.cpu_offload:
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1:
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
356
357
                self.pre_weight.to_cpu()
                self.post_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    @torch.no_grad()
    def infer_with_cfg_parallel(self, inputs):
        assert self.config["enable_cfg"], "enable_cfg must be True"
        cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
        assert dist.get_world_size(cfg_p_group) == 2, f"cfg_p_world_size must be equal to 2"
        cfg_p_rank = dist.get_rank(cfg_p_group)

        if cfg_p_rank == 0:
            embed, grid_sizes, pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=True)
            x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
            noise_pred = self.post_infer.infer(self.post_weight, x, embed, grid_sizes)[0]
        else:
            embed, grid_sizes, pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=False)
            x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
            noise_pred = self.post_infer.infer(self.post_weight, x, embed, grid_sizes)[0]

        noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
        dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)

        noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
        noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
        self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)