model.py 21.1 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
# Modified from transformers.models.t5.modeling_t5
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
import os
PengGao's avatar
PengGao committed
5

helloyongyang's avatar
helloyongyang committed
6
7
8
import torch
import torch.nn as nn
import torch.nn.functional as F
root's avatar
root committed
9
from loguru import logger
10

PengGao's avatar
PengGao committed
11
from lightx2v.models.input_encoders.hf.q_linear import Q8FQuantLinearFp8, Q8FQuantLinearInt8, TorchaoQuantLinearInt8, VllmQuantLinearFp8, VllmQuantLinearInt8
12
from lightx2v.utils.envs import *
gushiqiao's avatar
gushiqiao committed
13
from lightx2v.utils.utils import load_weights
PengGao's avatar
PengGao committed
14
15

from .tokenizer import HuggingfaceTokenizer
helloyongyang's avatar
helloyongyang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

__all__ = [
    "T5Model",
    "T5Encoder",
    "T5Decoder",
    "T5EncoderModel",
]


def fp16_clamp(x):
    if x.dtype == torch.float16 and torch.isinf(x).any():
        clamp = torch.finfo(x.dtype).max - 1000
        x = torch.clamp(x, min=-clamp, max=clamp)
    return x


gushiqiao's avatar
gushiqiao committed
32
33
34
35
36
37
38
39
def optimize_memory_usage():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    import gc

    gc.collect()


helloyongyang's avatar
helloyongyang committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def init_weights(m):
    if isinstance(m, T5LayerNorm):
        nn.init.ones_(m.weight)
    elif isinstance(m, T5Model):
        nn.init.normal_(m.token_embedding.weight, std=1.0)
    elif isinstance(m, T5FeedForward):
        nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
    elif isinstance(m, T5Attention):
        nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn) ** -0.5)
        nn.init.normal_(m.k.weight, std=m.dim**-0.5)
        nn.init.normal_(m.v.weight, std=m.dim**-0.5)
        nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn) ** -0.5)
    elif isinstance(m, T5RelativeEmbedding):
Dongz's avatar
Dongz committed
55
        nn.init.normal_(m.embedding.weight, std=(2 * m.num_buckets * m.num_heads) ** -0.5)
helloyongyang's avatar
helloyongyang committed
56
57
58
59


class GELU(nn.Module):
    def forward(self, x):
Dongz's avatar
Dongz committed
60
        return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
helloyongyang's avatar
helloyongyang committed
61
62
63


class T5LayerNorm(nn.Module):
gushiqiao's avatar
gushiqiao committed
64
    def __init__(self, dim, eps=1e-6, dtype=torch.float16):
helloyongyang's avatar
helloyongyang committed
65
66
67
        super(T5LayerNorm, self).__init__()
        self.dim = dim
        self.eps = eps
gushiqiao's avatar
gushiqiao committed
68
        self.weight = nn.Parameter(torch.ones(dim, dtype=dtype))
helloyongyang's avatar
helloyongyang committed
69
70
71
72
73
74
75
76
77

    def forward(self, x):
        x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + self.eps)
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            x = x.type_as(self.weight)
        return self.weight * x


class T5Attention(nn.Module):
gushiqiao's avatar
gushiqiao committed
78
    def __init__(self, dim, dim_attn, num_heads, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
79
80
81
82
83
84
85
        assert dim_attn % num_heads == 0
        super(T5Attention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.num_heads = num_heads
        self.head_dim = dim_attn // num_heads

86
87
        if quantized:
            if quant_scheme == "int8":
gushiqiao's avatar
gushiqiao committed
88
                linear_cls = VllmQuantLinearInt8
89
            elif quant_scheme == "fp8":
gushiqiao's avatar
gushiqiao committed
90
91
92
                linear_cls = VllmQuantLinearFp8
            elif quant_scheme == "int8-torchao":
                linear_cls = TorchaoQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
93
94
95
96
            elif quant_scheme == "int8-q8f":
                linear_cls = Q8FQuantLinearInt8
            elif quant_scheme == "fp8-q8f":
                linear_cls = Q8FQuantLinearFp8
97
98
99
        else:
            linear_cls = nn.Linear

helloyongyang's avatar
helloyongyang committed
100
        # layers
gushiqiao's avatar
gushiqiao committed
101
102
103
104
        self.q = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.k = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.v = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.o = linear_cls(dim_attn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, context=None, mask=None, pos_bias=None):
        """
        x:          [B, L1, C].
        context:    [B, L2, C] or None.
        mask:       [B, L2] or [B, L1, L2] or None.
        """
        # check inputs
        context = x if context is None else context
        b, n, c = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.q(x).view(b, -1, n, c)
        k = self.k(context).view(b, -1, n, c)
        v = self.v(context).view(b, -1, n, c)

        # attention bias
        attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
        if pos_bias is not None:
            attn_bias += pos_bias
        if mask is not None:
            assert mask.ndim in [2, 3]
            mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1)
            attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)

        # compute attention (T5 does not use scaling)
        attn = torch.einsum("binc,bjnc->bnij", q, k) + attn_bias
gushiqiao's avatar
gushiqiao committed
133
134
135

        if hasattr(self, "cpu_offload") and self.cpu_offload:
            del attn_bias
136
        attn = F.softmax(attn.float(), dim=-1).type_as(attn)
helloyongyang's avatar
helloyongyang committed
137
138
        x = torch.einsum("bnij,bjnc->binc", attn, v)

gushiqiao's avatar
gushiqiao committed
139
140
        if hasattr(self, "cpu_offload") and self.cpu_offload:
            del attn
helloyongyang's avatar
helloyongyang committed
141
142
143
144
145
146
147
        x = x.reshape(b, -1, n * c)
        x = self.o(x)
        x = self.dropout(x)
        return x


class T5FeedForward(nn.Module):
gushiqiao's avatar
gushiqiao committed
148
    def __init__(self, dim, dim_ffn, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
149
150
151
152
        super(T5FeedForward, self).__init__()
        self.dim = dim
        self.dim_ffn = dim_ffn

153
154
        if quantized:
            if quant_scheme == "int8":
gushiqiao's avatar
gushiqiao committed
155
                linear_cls = VllmQuantLinearInt8
156
            elif quant_scheme == "fp8":
gushiqiao's avatar
gushiqiao committed
157
158
159
                linear_cls = VllmQuantLinearFp8
            elif quant_scheme == "int8-torchao":
                linear_cls = TorchaoQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
160
161
162
163
            elif quant_scheme == "int8-q8f":
                linear_cls = Q8FQuantLinearInt8
            elif quant_scheme == "fp8-q8f":
                linear_cls = Q8FQuantLinearFp8
164
165
        else:
            linear_cls = nn.Linear
helloyongyang's avatar
helloyongyang committed
166
        # layers
gushiqiao's avatar
gushiqiao committed
167
168
169
        self.gate = nn.Sequential(linear_cls(dim, dim_ffn, bias=False, dtype=dtype), GELU())
        self.fc1 = linear_cls(dim, dim_ffn, bias=False, dtype=dtype)
        self.fc2 = linear_cls(dim_ffn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
170
171
172
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
gushiqiao's avatar
gushiqiao committed
173
174
175
176
177
178
179
180
        if hasattr(self, "cpu_offload") and self.cpu_offload:
            gate_out = self.gate(x)
            fc1_out = self.fc1(x)
            x = fc1_out * gate_out
            del gate_out, fc1_out
        else:
            x = self.fc1(x) * self.gate(x)

helloyongyang's avatar
helloyongyang committed
181
182
183
184
185
186
187
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class T5SelfAttention(nn.Module):
gushiqiao's avatar
gushiqiao committed
188
    def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
189
190
191
192
193
194
195
196
197
        super(T5SelfAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
gushiqiao's avatar
gushiqiao committed
198
199
200
201
202
        self.norm1 = T5LayerNorm(dim, dtype=dtype)
        self.attn = T5Attention(dim, dim_attn, num_heads, dropout, quantized, quant_scheme, dtype)
        self.norm2 = T5LayerNorm(dim, dtype=dtype)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout, quantized, quant_scheme, dtype=dtype)
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
203
204
205

    def forward(self, x, mask=None, pos_bias=None):
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
gushiqiao's avatar
gushiqiao committed
206
207
208
209
210
211
212
213
214
215
216
217
218

        if hasattr(self, "cpu_offload") and self.cpu_offload:
            attn_out = self.attn(self.norm1(x), mask=mask, pos_bias=e)
            x = fp16_clamp(x + attn_out)
            del attn_out

            ffn_out = self.ffn(self.norm2(x))
            x = fp16_clamp(x + ffn_out)
            del ffn_out
        else:
            x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
            x = fp16_clamp(x + self.ffn(self.norm2(x)))

helloyongyang's avatar
helloyongyang committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        return x


class T5CrossAttention(nn.Module):
    def __init__(
        self,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5CrossAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.norm1 = T5LayerNorm(dim)
        self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm2 = T5LayerNorm(dim)
        self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm3 = T5LayerNorm(dim)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout)
Dongz's avatar
Dongz committed
248
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False)
helloyongyang's avatar
helloyongyang committed
249

Dongz's avatar
Dongz committed
250
    def forward(self, x, mask=None, encoder_states=None, encoder_mask=None, pos_bias=None):
helloyongyang's avatar
helloyongyang committed
251
252
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
        x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
Dongz's avatar
Dongz committed
253
        x = fp16_clamp(x + self.cross_attn(self.norm2(x), context=encoder_states, mask=encoder_mask))
helloyongyang's avatar
helloyongyang committed
254
255
256
257
258
        x = fp16_clamp(x + self.ffn(self.norm3(x)))
        return x


class T5RelativeEmbedding(nn.Module):
gushiqiao's avatar
gushiqiao committed
259
    def __init__(self, num_buckets, num_heads, bidirectional, dtype=torch.bfloat16, max_dist=128):
helloyongyang's avatar
helloyongyang committed
260
261
262
263
264
265
266
        super(T5RelativeEmbedding, self).__init__()
        self.num_buckets = num_buckets
        self.num_heads = num_heads
        self.bidirectional = bidirectional
        self.max_dist = max_dist

        # layers
gushiqiao's avatar
gushiqiao committed
267
        self.embedding = nn.Embedding(num_buckets, num_heads, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
268
269
270
271
272

    def forward(self, lq, lk):
        device = self.embedding.weight.device
        # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
        #     torch.arange(lq).unsqueeze(1).to(device)
Dongz's avatar
Dongz committed
273
        rel_pos = torch.arange(lk, device=device).unsqueeze(0) - torch.arange(lq, device=device).unsqueeze(1)
helloyongyang's avatar
helloyongyang committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        rel_pos = self._relative_position_bucket(rel_pos)
        rel_pos_embeds = self.embedding(rel_pos)
        rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(0)  # [1, N, Lq, Lk]
        return rel_pos_embeds.contiguous()

    def _relative_position_bucket(self, rel_pos):
        # preprocess
        if self.bidirectional:
            num_buckets = self.num_buckets // 2
            rel_buckets = (rel_pos > 0).long() * num_buckets
            rel_pos = torch.abs(rel_pos)
        else:
            num_buckets = self.num_buckets
            rel_buckets = 0
            rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))

        # embeddings for small and large positions
        max_exact = num_buckets // 2
Dongz's avatar
Dongz committed
292
293
        rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / math.log(self.max_dist / max_exact) * (num_buckets - max_exact)).long()
        rel_pos_large = torch.min(rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
helloyongyang's avatar
helloyongyang committed
294
295
296
297
298
        rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
        return rel_buckets


class T5Encoder(nn.Module):
gushiqiao's avatar
gushiqiao committed
299
    def __init__(self, dtype, vocab, dim, dim_attn, dim_ffn, num_heads, num_layers, num_buckets, shared_pos=True, dropout=0.1, cpu_offload=False, quantized=False, quant_scheme=None):
helloyongyang's avatar
helloyongyang committed
300
        super(T5Encoder, self).__init__()
301

302
        self.cpu_offload = cpu_offload
helloyongyang's avatar
helloyongyang committed
303
304
305
306
307
308
309
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos
310
        self.quant_scheme = quant_scheme
helloyongyang's avatar
helloyongyang committed
311
312

        # layers
gushiqiao's avatar
gushiqiao committed
313
314
        self.token_embedding = vocab.to(dtype) if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim, dtype=dtype)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
315
        self.dropout = nn.Dropout(dropout)
gushiqiao's avatar
gushiqiao committed
316
        self.blocks = nn.ModuleList([T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout, quantized, quant_scheme, dtype) for _ in range(num_layers)])
gushiqiao's avatar
gushiqiao committed
317
318
319
320
321
322

        if cpu_offload:
            for block in self.blocks:
                block.cpu_offload = cpu_offload
                block.attn.cpu_offload = cpu_offload
                block.ffn.cpu_offload = cpu_offload
gushiqiao's avatar
gushiqiao committed
323
        self.norm = T5LayerNorm(dim, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
324
325

        # initialize weights
326
        # self.apply(init_weights)
helloyongyang's avatar
helloyongyang committed
327
328

    def forward(self, ids, mask=None):
329
330
        if self.cpu_offload:
            self.token_embedding = self.token_embedding.cuda()
helloyongyang's avatar
helloyongyang committed
331
        x = self.token_embedding(ids)
332
333
        if self.cpu_offload:
            self.token_embedding = self.token_embedding.cpu()
gushiqiao's avatar
gushiqiao committed
334
            optimize_memory_usage()
helloyongyang's avatar
helloyongyang committed
335
        x = self.dropout(x)
gushiqiao's avatar
gushiqiao committed
336

337
338
        if self.cpu_offload and self.pos_embedding is not None:
            self.pos_embedding = self.pos_embedding.cuda()
helloyongyang's avatar
helloyongyang committed
339
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
340
341
        if self.cpu_offload and self.pos_embedding is not None:
            self.pos_embedding = self.pos_embedding.cpu()
gushiqiao's avatar
gushiqiao committed
342
343
344
            optimize_memory_usage()

        for i, block in enumerate(self.blocks):
345
346
            if self.cpu_offload:
                block = block.cuda()
helloyongyang's avatar
helloyongyang committed
347
            x = block(x, mask, pos_bias=e)
348
349
            if self.cpu_offload:
                block = block.cpu()
gushiqiao's avatar
gushiqiao committed
350
351
352
                del block
                optimize_memory_usage()

353
354
        if self.cpu_offload:
            self.norm = self.norm.cuda()
helloyongyang's avatar
helloyongyang committed
355
        x = self.norm(x)
356
357
        if self.cpu_offload:
            self.norm = self.norm.cpu()
gushiqiao's avatar
gushiqiao committed
358
359
            optimize_memory_usage()

helloyongyang's avatar
helloyongyang committed
360
        x = self.dropout(x)
361
        return x.to(GET_DTYPE())
helloyongyang's avatar
helloyongyang committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386


class T5Decoder(nn.Module):
    def __init__(
        self,
        vocab,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Decoder, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
Dongz's avatar
Dongz committed
387
388
        self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
389
        self.dropout = nn.Dropout(dropout)
Dongz's avatar
Dongz committed
390
        self.blocks = nn.ModuleList([T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)])
helloyongyang's avatar
helloyongyang committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        self.norm = T5LayerNorm(dim)

        # initialize weights
        self.apply(init_weights)

    def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
        b, s = ids.size()

        # causal mask
        if mask is None:
            mask = torch.tril(torch.ones(1, s, s).to(ids.device))
        elif mask.ndim == 2:
            mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))

        # layers
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
        for block in self.blocks:
            x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
        x = self.norm(x)
        x = self.dropout(x)
        return x


class T5Model(nn.Module):
    def __init__(
        self,
        vocab_size,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        encoder_layers,
        decoder_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Model, self).__init__()
        self.vocab_size = vocab_size
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.encoder_layers = encoder_layers
        self.decoder_layers = decoder_layers
        self.num_buckets = num_buckets

        # layers
        self.token_embedding = nn.Embedding(vocab_size, dim)
        self.encoder = T5Encoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            encoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.decoder = T5Decoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            decoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.head = nn.Linear(dim, vocab_size, bias=False)

        # initialize weights
        self.apply(init_weights)

    def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
        x = self.encoder(encoder_ids, encoder_mask)
        x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
        x = self.head(x)
        return x


def _t5(
    name,
    encoder_only=False,
    decoder_only=False,
    return_tokenizer=False,
    tokenizer_kwargs={},
    dtype=torch.float32,
    device="cpu",
    **kwargs,
):
    # sanity check
    assert not (encoder_only and decoder_only)

    # params
    if encoder_only:
        model_cls = T5Encoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("encoder_layers")
        _ = kwargs.pop("decoder_layers")
    elif decoder_only:
        model_cls = T5Decoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("decoder_layers")
        _ = kwargs.pop("encoder_layers")
    else:
        model_cls = T5Model

    # init model
    with torch.device(device):
gushiqiao's avatar
gushiqiao committed
505
        model = model_cls(dtype=dtype, **kwargs)
helloyongyang's avatar
helloyongyang committed
506
507

    # set device
gushiqiao's avatar
gushiqiao committed
508
    model = model.to(device=device)
509
    return model
helloyongyang's avatar
helloyongyang committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537


def umt5_xxl(**kwargs):
    cfg = dict(
        vocab_size=256384,
        dim=4096,
        dim_attn=4096,
        dim_ffn=10240,
        num_heads=64,
        encoder_layers=24,
        decoder_layers=24,
        num_buckets=32,
        shared_pos=False,
        dropout=0.1,
    )
    cfg.update(**kwargs)
    return _t5("umt5-xxl", **cfg)


class T5EncoderModel:
    def __init__(
        self,
        text_len,
        dtype=torch.bfloat16,
        device=torch.cuda.current_device(),
        checkpoint_path=None,
        tokenizer_path=None,
        shard_fn=None,
538
539
        cpu_offload=False,
        offload_granularity="model",
540
541
542
        t5_quantized=False,
        t5_quantized_ckpt=None,
        quant_scheme=None,
543
        seq_p_group=None,
helloyongyang's avatar
helloyongyang committed
544
545
546
547
    ):
        self.text_len = text_len
        self.dtype = dtype
        self.device = device
548
549
550
551
        if t5_quantized_ckpt is not None and t5_quantized:
            self.checkpoint_path = t5_quantized_ckpt
        else:
            self.checkpoint_path = checkpoint_path
helloyongyang's avatar
helloyongyang committed
552
        self.tokenizer_path = tokenizer_path
553
554
555
556
557
558
        self.offload_granularity = offload_granularity

        # sync cpu offload
        self.cpu_offload = cpu_offload
        if self.cpu_offload:
            assert self.offload_granularity in ["block", "model"]
helloyongyang's avatar
helloyongyang committed
559

560
561
562
563
564
565
        model = (
            umt5_xxl(
                encoder_only=True,
                return_tokenizer=False,
                dtype=dtype,
                device=device,
566
567
568
                cpu_offload=(cpu_offload if self.offload_granularity == "block" else False),
                quantized=t5_quantized,
                quant_scheme=quant_scheme,
569
570
571
572
            )
            .eval()
            .requires_grad_(False)
        )
573

gushiqiao's avatar
gushiqiao committed
574
575
        weights_dict = load_weights(self.checkpoint_path, cpu_offload=cpu_offload)
        model.load_state_dict(weights_dict)
gushiqiao's avatar
gushiqiao committed
576

helloyongyang's avatar
helloyongyang committed
577
578
579
580
581
582
        self.model = model
        if shard_fn is not None:
            self.model = shard_fn(self.model, sync_module_states=False)
        else:
            self.model.to(self.device)
        # init tokenizer
Dongz's avatar
Dongz committed
583
        self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=text_len, clean="whitespace")
helloyongyang's avatar
helloyongyang committed
584

TorynCurtis's avatar
TorynCurtis committed
585
586
587
588
589
590
    def to_cpu(self):
        self.model = self.model.to("cpu")

    def to_cuda(self):
        self.model = self.model.to("cuda")

gushiqiao's avatar
gushiqiao committed
591
592
593
594
    def optimize_memory(self):
        """优化内存使用"""
        optimize_memory_usage()

595
596
    def infer(self, texts):
        if self.cpu_offload and self.offload_granularity == "model":
TorynCurtis's avatar
TorynCurtis committed
597
598
            self.to_cuda()

helloyongyang's avatar
helloyongyang committed
599
600
601
602
        ids, mask = self.tokenizer(texts, return_mask=True, add_special_tokens=True)
        ids = ids.cuda()
        mask = mask.cuda()
        seq_lens = mask.gt(0).sum(dim=1).long()
gushiqiao's avatar
gushiqiao committed
603
604
605

        with torch.no_grad():
            context = self.model(ids, mask)
TorynCurtis's avatar
TorynCurtis committed
606

607
        if self.cpu_offload and self.offload_granularity == "model":
TorynCurtis's avatar
TorynCurtis committed
608
            self.to_cpu()
gushiqiao's avatar
gushiqiao committed
609
610
611
612
613
            optimize_memory_usage()

        del ids, mask
        if self.cpu_offload:
            optimize_memory_usage()
TorynCurtis's avatar
TorynCurtis committed
614

helloyongyang's avatar
helloyongyang committed
615
616
617
618
        return [u[:v] for u, v in zip(context, seq_lens)]


if __name__ == "__main__":
619
    checkpoint_dir = ""
helloyongyang's avatar
helloyongyang committed
620
621
622
623
624
625
626
627
628
629
630
631
    t5_checkpoint = "models_t5_umt5-xxl-enc-bf16.pth"
    t5_tokenizer = "google/umt5-xxl"
    model = T5EncoderModel(
        text_len=512,
        dtype=torch.bfloat16,
        device=torch.device("cuda"),
        checkpoint_path=os.path.join(checkpoint_dir, t5_checkpoint),
        tokenizer_path=os.path.join(checkpoint_dir, t5_tokenizer),
        shard_fn=None,
    )
    text = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
    outputs = model.infer(text)
root's avatar
root committed
632
    logger.info(outputs)