model.py 21.2 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
# Modified from transformers.models.t5.modeling_t5
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
import os
PengGao's avatar
PengGao committed
5

helloyongyang's avatar
helloyongyang committed
6
7
8
import torch
import torch.nn as nn
import torch.nn.functional as F
root's avatar
root committed
9
from loguru import logger
10

PengGao's avatar
PengGao committed
11
from lightx2v.models.input_encoders.hf.q_linear import Q8FQuantLinearFp8, Q8FQuantLinearInt8, TorchaoQuantLinearInt8, VllmQuantLinearFp8, VllmQuantLinearInt8
12
from lightx2v.utils.envs import *
PengGao's avatar
PengGao committed
13
14

from .tokenizer import HuggingfaceTokenizer
helloyongyang's avatar
helloyongyang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

__all__ = [
    "T5Model",
    "T5Encoder",
    "T5Decoder",
    "T5EncoderModel",
]


def fp16_clamp(x):
    if x.dtype == torch.float16 and torch.isinf(x).any():
        clamp = torch.finfo(x.dtype).max - 1000
        x = torch.clamp(x, min=-clamp, max=clamp)
    return x


gushiqiao's avatar
gushiqiao committed
31
32
33
34
35
36
37
38
def optimize_memory_usage():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    import gc

    gc.collect()


helloyongyang's avatar
helloyongyang committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def init_weights(m):
    if isinstance(m, T5LayerNorm):
        nn.init.ones_(m.weight)
    elif isinstance(m, T5Model):
        nn.init.normal_(m.token_embedding.weight, std=1.0)
    elif isinstance(m, T5FeedForward):
        nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
        nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
    elif isinstance(m, T5Attention):
        nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn) ** -0.5)
        nn.init.normal_(m.k.weight, std=m.dim**-0.5)
        nn.init.normal_(m.v.weight, std=m.dim**-0.5)
        nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn) ** -0.5)
    elif isinstance(m, T5RelativeEmbedding):
Dongz's avatar
Dongz committed
54
        nn.init.normal_(m.embedding.weight, std=(2 * m.num_buckets * m.num_heads) ** -0.5)
helloyongyang's avatar
helloyongyang committed
55
56
57
58


class GELU(nn.Module):
    def forward(self, x):
Dongz's avatar
Dongz committed
59
        return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
helloyongyang's avatar
helloyongyang committed
60
61
62


class T5LayerNorm(nn.Module):
gushiqiao's avatar
gushiqiao committed
63
    def __init__(self, dim, eps=1e-6, dtype=torch.float16):
helloyongyang's avatar
helloyongyang committed
64
65
66
        super(T5LayerNorm, self).__init__()
        self.dim = dim
        self.eps = eps
gushiqiao's avatar
gushiqiao committed
67
        self.weight = nn.Parameter(torch.ones(dim, dtype=dtype))
helloyongyang's avatar
helloyongyang committed
68
69
70
71
72
73
74
75
76

    def forward(self, x):
        x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + self.eps)
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            x = x.type_as(self.weight)
        return self.weight * x


class T5Attention(nn.Module):
gushiqiao's avatar
gushiqiao committed
77
    def __init__(self, dim, dim_attn, num_heads, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
78
79
80
81
82
83
84
        assert dim_attn % num_heads == 0
        super(T5Attention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.num_heads = num_heads
        self.head_dim = dim_attn // num_heads

85
86
        if quantized:
            if quant_scheme == "int8":
gushiqiao's avatar
gushiqiao committed
87
                linear_cls = VllmQuantLinearInt8
88
            elif quant_scheme == "fp8":
gushiqiao's avatar
gushiqiao committed
89
90
91
                linear_cls = VllmQuantLinearFp8
            elif quant_scheme == "int8-torchao":
                linear_cls = TorchaoQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
92
93
94
95
            elif quant_scheme == "int8-q8f":
                linear_cls = Q8FQuantLinearInt8
            elif quant_scheme == "fp8-q8f":
                linear_cls = Q8FQuantLinearFp8
96
97
98
        else:
            linear_cls = nn.Linear

helloyongyang's avatar
helloyongyang committed
99
        # layers
gushiqiao's avatar
gushiqiao committed
100
101
102
103
        self.q = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.k = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.v = linear_cls(dim, dim_attn, bias=False, dtype=dtype)
        self.o = linear_cls(dim_attn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, context=None, mask=None, pos_bias=None):
        """
        x:          [B, L1, C].
        context:    [B, L2, C] or None.
        mask:       [B, L2] or [B, L1, L2] or None.
        """
        # check inputs
        context = x if context is None else context
        b, n, c = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.q(x).view(b, -1, n, c)
        k = self.k(context).view(b, -1, n, c)
        v = self.v(context).view(b, -1, n, c)

        # attention bias
        attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
        if pos_bias is not None:
            attn_bias += pos_bias
        if mask is not None:
            assert mask.ndim in [2, 3]
            mask = mask.view(b, 1, 1, -1) if mask.ndim == 2 else mask.unsqueeze(1)
            attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)

        # compute attention (T5 does not use scaling)
        attn = torch.einsum("binc,bjnc->bnij", q, k) + attn_bias
gushiqiao's avatar
gushiqiao committed
132
133
134

        if hasattr(self, "cpu_offload") and self.cpu_offload:
            del attn_bias
135
        attn = F.softmax(attn.float(), dim=-1).type_as(attn)
helloyongyang's avatar
helloyongyang committed
136
137
        x = torch.einsum("bnij,bjnc->binc", attn, v)

gushiqiao's avatar
gushiqiao committed
138
139
        if hasattr(self, "cpu_offload") and self.cpu_offload:
            del attn
helloyongyang's avatar
helloyongyang committed
140
141
142
143
144
145
146
        x = x.reshape(b, -1, n * c)
        x = self.o(x)
        x = self.dropout(x)
        return x


class T5FeedForward(nn.Module):
gushiqiao's avatar
gushiqiao committed
147
    def __init__(self, dim, dim_ffn, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
148
149
150
151
        super(T5FeedForward, self).__init__()
        self.dim = dim
        self.dim_ffn = dim_ffn

152
153
        if quantized:
            if quant_scheme == "int8":
gushiqiao's avatar
gushiqiao committed
154
                linear_cls = VllmQuantLinearInt8
155
            elif quant_scheme == "fp8":
gushiqiao's avatar
gushiqiao committed
156
157
158
                linear_cls = VllmQuantLinearFp8
            elif quant_scheme == "int8-torchao":
                linear_cls = TorchaoQuantLinearInt8
gushiqiao's avatar
gushiqiao committed
159
160
161
162
            elif quant_scheme == "int8-q8f":
                linear_cls = Q8FQuantLinearInt8
            elif quant_scheme == "fp8-q8f":
                linear_cls = Q8FQuantLinearFp8
163
164
        else:
            linear_cls = nn.Linear
helloyongyang's avatar
helloyongyang committed
165
        # layers
gushiqiao's avatar
gushiqiao committed
166
167
168
        self.gate = nn.Sequential(linear_cls(dim, dim_ffn, bias=False, dtype=dtype), GELU())
        self.fc1 = linear_cls(dim, dim_ffn, bias=False, dtype=dtype)
        self.fc2 = linear_cls(dim_ffn, dim, bias=False, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
169
170
171
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
gushiqiao's avatar
gushiqiao committed
172
173
174
175
176
177
178
179
        if hasattr(self, "cpu_offload") and self.cpu_offload:
            gate_out = self.gate(x)
            fc1_out = self.fc1(x)
            x = fc1_out * gate_out
            del gate_out, fc1_out
        else:
            x = self.fc1(x) * self.gate(x)

helloyongyang's avatar
helloyongyang committed
180
181
182
183
184
185
186
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x


class T5SelfAttention(nn.Module):
gushiqiao's avatar
gushiqiao committed
187
    def __init__(self, dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos=True, dropout=0.1, quantized=False, quant_scheme=None, dtype=torch.bfloat16):
helloyongyang's avatar
helloyongyang committed
188
189
190
191
192
193
194
195
196
        super(T5SelfAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
gushiqiao's avatar
gushiqiao committed
197
198
199
200
201
        self.norm1 = T5LayerNorm(dim, dtype=dtype)
        self.attn = T5Attention(dim, dim_attn, num_heads, dropout, quantized, quant_scheme, dtype)
        self.norm2 = T5LayerNorm(dim, dtype=dtype)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout, quantized, quant_scheme, dtype=dtype)
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
202
203
204

    def forward(self, x, mask=None, pos_bias=None):
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
gushiqiao's avatar
gushiqiao committed
205
206
207
208
209
210
211
212
213
214
215
216
217

        if hasattr(self, "cpu_offload") and self.cpu_offload:
            attn_out = self.attn(self.norm1(x), mask=mask, pos_bias=e)
            x = fp16_clamp(x + attn_out)
            del attn_out

            ffn_out = self.ffn(self.norm2(x))
            x = fp16_clamp(x + ffn_out)
            del ffn_out
        else:
            x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
            x = fp16_clamp(x + self.ffn(self.norm2(x)))

helloyongyang's avatar
helloyongyang committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        return x


class T5CrossAttention(nn.Module):
    def __init__(
        self,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5CrossAttention, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
        self.norm1 = T5LayerNorm(dim)
        self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm2 = T5LayerNorm(dim)
        self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
        self.norm3 = T5LayerNorm(dim)
        self.ffn = T5FeedForward(dim, dim_ffn, dropout)
Dongz's avatar
Dongz committed
247
        self.pos_embedding = None if shared_pos else T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False)
helloyongyang's avatar
helloyongyang committed
248

Dongz's avatar
Dongz committed
249
    def forward(self, x, mask=None, encoder_states=None, encoder_mask=None, pos_bias=None):
helloyongyang's avatar
helloyongyang committed
250
251
        e = pos_bias if self.shared_pos else self.pos_embedding(x.size(1), x.size(1))
        x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
Dongz's avatar
Dongz committed
252
        x = fp16_clamp(x + self.cross_attn(self.norm2(x), context=encoder_states, mask=encoder_mask))
helloyongyang's avatar
helloyongyang committed
253
254
255
256
257
        x = fp16_clamp(x + self.ffn(self.norm3(x)))
        return x


class T5RelativeEmbedding(nn.Module):
gushiqiao's avatar
gushiqiao committed
258
    def __init__(self, num_buckets, num_heads, bidirectional, dtype=torch.bfloat16, max_dist=128):
helloyongyang's avatar
helloyongyang committed
259
260
261
262
263
264
265
        super(T5RelativeEmbedding, self).__init__()
        self.num_buckets = num_buckets
        self.num_heads = num_heads
        self.bidirectional = bidirectional
        self.max_dist = max_dist

        # layers
gushiqiao's avatar
gushiqiao committed
266
        self.embedding = nn.Embedding(num_buckets, num_heads, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
267
268
269
270
271

    def forward(self, lq, lk):
        device = self.embedding.weight.device
        # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
        #     torch.arange(lq).unsqueeze(1).to(device)
Dongz's avatar
Dongz committed
272
        rel_pos = torch.arange(lk, device=device).unsqueeze(0) - torch.arange(lq, device=device).unsqueeze(1)
helloyongyang's avatar
helloyongyang committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        rel_pos = self._relative_position_bucket(rel_pos)
        rel_pos_embeds = self.embedding(rel_pos)
        rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(0)  # [1, N, Lq, Lk]
        return rel_pos_embeds.contiguous()

    def _relative_position_bucket(self, rel_pos):
        # preprocess
        if self.bidirectional:
            num_buckets = self.num_buckets // 2
            rel_buckets = (rel_pos > 0).long() * num_buckets
            rel_pos = torch.abs(rel_pos)
        else:
            num_buckets = self.num_buckets
            rel_buckets = 0
            rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))

        # embeddings for small and large positions
        max_exact = num_buckets // 2
Dongz's avatar
Dongz committed
291
292
        rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / math.log(self.max_dist / max_exact) * (num_buckets - max_exact)).long()
        rel_pos_large = torch.min(rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
helloyongyang's avatar
helloyongyang committed
293
294
295
296
297
        rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
        return rel_buckets


class T5Encoder(nn.Module):
gushiqiao's avatar
gushiqiao committed
298
    def __init__(self, dtype, vocab, dim, dim_attn, dim_ffn, num_heads, num_layers, num_buckets, shared_pos=True, dropout=0.1, cpu_offload=False, quantized=False, quant_scheme=None):
helloyongyang's avatar
helloyongyang committed
299
        super(T5Encoder, self).__init__()
300

301
        self.cpu_offload = cpu_offload
helloyongyang's avatar
helloyongyang committed
302
303
304
305
306
307
308
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos
309
        self.quant_scheme = quant_scheme
helloyongyang's avatar
helloyongyang committed
310
311

        # layers
gushiqiao's avatar
gushiqiao committed
312
313
        self.token_embedding = vocab.to(dtype) if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim, dtype=dtype)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=True, dtype=dtype) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
314
        self.dropout = nn.Dropout(dropout)
gushiqiao's avatar
gushiqiao committed
315
        self.blocks = nn.ModuleList([T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout, quantized, quant_scheme, dtype) for _ in range(num_layers)])
gushiqiao's avatar
gushiqiao committed
316
317
318
319
320
321

        if cpu_offload:
            for block in self.blocks:
                block.cpu_offload = cpu_offload
                block.attn.cpu_offload = cpu_offload
                block.ffn.cpu_offload = cpu_offload
gushiqiao's avatar
gushiqiao committed
322
        self.norm = T5LayerNorm(dim, dtype=dtype)
helloyongyang's avatar
helloyongyang committed
323
324

        # initialize weights
325
        # self.apply(init_weights)
helloyongyang's avatar
helloyongyang committed
326
327

    def forward(self, ids, mask=None):
328
329
        if self.cpu_offload:
            self.token_embedding = self.token_embedding.cuda()
helloyongyang's avatar
helloyongyang committed
330
        x = self.token_embedding(ids)
331
332
        if self.cpu_offload:
            self.token_embedding = self.token_embedding.cpu()
gushiqiao's avatar
gushiqiao committed
333
            optimize_memory_usage()
helloyongyang's avatar
helloyongyang committed
334
        x = self.dropout(x)
gushiqiao's avatar
gushiqiao committed
335

336
337
        if self.cpu_offload and self.pos_embedding is not None:
            self.pos_embedding = self.pos_embedding.cuda()
helloyongyang's avatar
helloyongyang committed
338
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
339
340
        if self.cpu_offload and self.pos_embedding is not None:
            self.pos_embedding = self.pos_embedding.cpu()
gushiqiao's avatar
gushiqiao committed
341
342
343
            optimize_memory_usage()

        for i, block in enumerate(self.blocks):
344
345
            if self.cpu_offload:
                block = block.cuda()
helloyongyang's avatar
helloyongyang committed
346
            x = block(x, mask, pos_bias=e)
347
348
            if self.cpu_offload:
                block = block.cpu()
gushiqiao's avatar
gushiqiao committed
349
350
351
                del block
                optimize_memory_usage()

352
353
        if self.cpu_offload:
            self.norm = self.norm.cuda()
helloyongyang's avatar
helloyongyang committed
354
        x = self.norm(x)
355
356
        if self.cpu_offload:
            self.norm = self.norm.cpu()
gushiqiao's avatar
gushiqiao committed
357
358
            optimize_memory_usage()

helloyongyang's avatar
helloyongyang committed
359
        x = self.dropout(x)
360
        return x.to(GET_DTYPE())
helloyongyang's avatar
helloyongyang committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385


class T5Decoder(nn.Module):
    def __init__(
        self,
        vocab,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        num_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Decoder, self).__init__()
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.num_buckets = num_buckets
        self.shared_pos = shared_pos

        # layers
Dongz's avatar
Dongz committed
386
387
        self.token_embedding = vocab if isinstance(vocab, nn.Embedding) else nn.Embedding(vocab, dim)
        self.pos_embedding = T5RelativeEmbedding(num_buckets, num_heads, bidirectional=False) if shared_pos else None
helloyongyang's avatar
helloyongyang committed
388
        self.dropout = nn.Dropout(dropout)
Dongz's avatar
Dongz committed
389
        self.blocks = nn.ModuleList([T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, shared_pos, dropout) for _ in range(num_layers)])
helloyongyang's avatar
helloyongyang committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        self.norm = T5LayerNorm(dim)

        # initialize weights
        self.apply(init_weights)

    def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
        b, s = ids.size()

        # causal mask
        if mask is None:
            mask = torch.tril(torch.ones(1, s, s).to(ids.device))
        elif mask.ndim == 2:
            mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))

        # layers
        x = self.token_embedding(ids)
        x = self.dropout(x)
        e = self.pos_embedding(x.size(1), x.size(1)) if self.shared_pos else None
        for block in self.blocks:
            x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
        x = self.norm(x)
        x = self.dropout(x)
        return x


class T5Model(nn.Module):
    def __init__(
        self,
        vocab_size,
        dim,
        dim_attn,
        dim_ffn,
        num_heads,
        encoder_layers,
        decoder_layers,
        num_buckets,
        shared_pos=True,
        dropout=0.1,
    ):
        super(T5Model, self).__init__()
        self.vocab_size = vocab_size
        self.dim = dim
        self.dim_attn = dim_attn
        self.dim_ffn = dim_ffn
        self.num_heads = num_heads
        self.encoder_layers = encoder_layers
        self.decoder_layers = decoder_layers
        self.num_buckets = num_buckets

        # layers
        self.token_embedding = nn.Embedding(vocab_size, dim)
        self.encoder = T5Encoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            encoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.decoder = T5Decoder(
            self.token_embedding,
            dim,
            dim_attn,
            dim_ffn,
            num_heads,
            decoder_layers,
            num_buckets,
            shared_pos,
            dropout,
        )
        self.head = nn.Linear(dim, vocab_size, bias=False)

        # initialize weights
        self.apply(init_weights)

    def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
        x = self.encoder(encoder_ids, encoder_mask)
        x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
        x = self.head(x)
        return x


def _t5(
    name,
    encoder_only=False,
    decoder_only=False,
    return_tokenizer=False,
    tokenizer_kwargs={},
    dtype=torch.float32,
    device="cpu",
    **kwargs,
):
    # sanity check
    assert not (encoder_only and decoder_only)

    # params
    if encoder_only:
        model_cls = T5Encoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("encoder_layers")
        _ = kwargs.pop("decoder_layers")
    elif decoder_only:
        model_cls = T5Decoder
        kwargs["vocab"] = kwargs.pop("vocab_size")
        kwargs["num_layers"] = kwargs.pop("decoder_layers")
        _ = kwargs.pop("encoder_layers")
    else:
        model_cls = T5Model

    # init model
    with torch.device(device):
gushiqiao's avatar
gushiqiao committed
504
        model = model_cls(dtype=dtype, **kwargs)
helloyongyang's avatar
helloyongyang committed
505
506

    # set device
gushiqiao's avatar
gushiqiao committed
507
    model = model.to(device=device)
508
    return model
helloyongyang's avatar
helloyongyang committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536


def umt5_xxl(**kwargs):
    cfg = dict(
        vocab_size=256384,
        dim=4096,
        dim_attn=4096,
        dim_ffn=10240,
        num_heads=64,
        encoder_layers=24,
        decoder_layers=24,
        num_buckets=32,
        shared_pos=False,
        dropout=0.1,
    )
    cfg.update(**kwargs)
    return _t5("umt5-xxl", **cfg)


class T5EncoderModel:
    def __init__(
        self,
        text_len,
        dtype=torch.bfloat16,
        device=torch.cuda.current_device(),
        checkpoint_path=None,
        tokenizer_path=None,
        shard_fn=None,
537
538
        cpu_offload=False,
        offload_granularity="model",
539
540
541
        t5_quantized=False,
        t5_quantized_ckpt=None,
        quant_scheme=None,
helloyongyang's avatar
helloyongyang committed
542
543
544
545
    ):
        self.text_len = text_len
        self.dtype = dtype
        self.device = device
546
547
548
549
        if t5_quantized_ckpt is not None and t5_quantized:
            self.checkpoint_path = t5_quantized_ckpt
        else:
            self.checkpoint_path = checkpoint_path
helloyongyang's avatar
helloyongyang committed
550
        self.tokenizer_path = tokenizer_path
551
552
553
554
555
556
        self.offload_granularity = offload_granularity

        # sync cpu offload
        self.cpu_offload = cpu_offload
        if self.cpu_offload:
            assert self.offload_granularity in ["block", "model"]
helloyongyang's avatar
helloyongyang committed
557

558
559
560
561
562
563
        model = (
            umt5_xxl(
                encoder_only=True,
                return_tokenizer=False,
                dtype=dtype,
                device=device,
564
565
566
                cpu_offload=(cpu_offload if self.offload_granularity == "block" else False),
                quantized=t5_quantized,
                quant_scheme=quant_scheme,
567
568
569
570
            )
            .eval()
            .requires_grad_(False)
        )
571

gushiqiao's avatar
gushiqiao committed
572
        logger.info(f"Start Loading weights from {self.checkpoint_path}")
573
        model.load_state_dict(torch.load(self.checkpoint_path, map_location="cpu", weights_only=True))
gushiqiao's avatar
gushiqiao committed
574
575
        logger.info(f"End Loading weights from {self.checkpoint_path}")

helloyongyang's avatar
helloyongyang committed
576
577
578
579
580
581
        self.model = model
        if shard_fn is not None:
            self.model = shard_fn(self.model, sync_module_states=False)
        else:
            self.model.to(self.device)
        # init tokenizer
Dongz's avatar
Dongz committed
582
        self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=text_len, clean="whitespace")
helloyongyang's avatar
helloyongyang committed
583

TorynCurtis's avatar
TorynCurtis committed
584
585
586
587
588
589
    def to_cpu(self):
        self.model = self.model.to("cpu")

    def to_cuda(self):
        self.model = self.model.to("cuda")

gushiqiao's avatar
gushiqiao committed
590
591
592
593
    def optimize_memory(self):
        """优化内存使用"""
        optimize_memory_usage()

594
595
    def infer(self, texts):
        if self.cpu_offload and self.offload_granularity == "model":
TorynCurtis's avatar
TorynCurtis committed
596
597
            self.to_cuda()

helloyongyang's avatar
helloyongyang committed
598
599
600
601
        ids, mask = self.tokenizer(texts, return_mask=True, add_special_tokens=True)
        ids = ids.cuda()
        mask = mask.cuda()
        seq_lens = mask.gt(0).sum(dim=1).long()
gushiqiao's avatar
gushiqiao committed
602
603
604

        with torch.no_grad():
            context = self.model(ids, mask)
TorynCurtis's avatar
TorynCurtis committed
605

606
        if self.cpu_offload and self.offload_granularity == "model":
TorynCurtis's avatar
TorynCurtis committed
607
            self.to_cpu()
gushiqiao's avatar
gushiqiao committed
608
609
610
611
612
            optimize_memory_usage()

        del ids, mask
        if self.cpu_offload:
            optimize_memory_usage()
TorynCurtis's avatar
TorynCurtis committed
613

helloyongyang's avatar
helloyongyang committed
614
615
616
617
        return [u[:v] for u, v in zip(context, seq_lens)]


if __name__ == "__main__":
618
    checkpoint_dir = ""
helloyongyang's avatar
helloyongyang committed
619
620
621
622
623
624
625
626
627
628
629
630
    t5_checkpoint = "models_t5_umt5-xxl-enc-bf16.pth"
    t5_tokenizer = "google/umt5-xxl"
    model = T5EncoderModel(
        text_len=512,
        dtype=torch.bfloat16,
        device=torch.device("cuda"),
        checkpoint_path=os.path.join(checkpoint_dir, t5_checkpoint),
        tokenizer_path=os.path.join(checkpoint_dir, t5_tokenizer),
        shard_fn=None,
    )
    text = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
    outputs = model.infer(text)
root's avatar
root committed
631
    logger.info(outputs)