model.py 16.5 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
# Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip''
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T

from lightx2v.attentions import attention
root's avatar
root committed
12
from loguru import logger
13
from lightx2v.models.input_encoders.hf.q_linear import QuantLinearInt8, QuantLinearFp8
wangshankun's avatar
wangshankun committed
14
15
16
from einops import rearrange
from torch import Tensor
from transformers import CLIPVisionModel
helloyongyang's avatar
helloyongyang committed
17
18
19


__all__ = [
Dongz's avatar
Dongz committed
20
21
22
    "XLMRobertaCLIP",
    "clip_xlm_roberta_vit_h_14",
    "CLIPModel",
helloyongyang's avatar
helloyongyang committed
23
24
25
26
27
28
29
30
31
32
]


def pos_interpolate(pos, seq_len):
    if pos.size(1) == seq_len:
        return pos
    else:
        src_grid = int(math.sqrt(pos.size(1)))
        tar_grid = int(math.sqrt(seq_len))
        n = pos.size(1) - src_grid * src_grid
Dongz's avatar
Dongz committed
33
34
35
36
37
38
39
        return torch.cat(
            [
                pos[:, :n],
                F.interpolate(pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(0, 3, 1, 2), size=(tar_grid, tar_grid), mode="bicubic", align_corners=False).flatten(2).transpose(1, 2),
            ],
            dim=1,
        )
helloyongyang's avatar
helloyongyang committed
40
41
42
43
44
45
46
47
48
49
50
51
52


class QuickGELU(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(1.702 * x)


class LayerNorm(nn.LayerNorm):
    def forward(self, x):
        return super().forward(x.float()).type_as(x)


class SelfAttention(nn.Module):
53
    def __init__(self, dim, num_heads, causal=False, attn_dropout=0.0, proj_dropout=0.0, quantized=False, quant_scheme=None):
helloyongyang's avatar
helloyongyang committed
54
55
56
57
58
59
60
61
62
63
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.causal = causal
        self.attn_dropout = attn_dropout
        self.proj_dropout = proj_dropout

        # layers
64
65
66
        if quantized:
            if quant_scheme == "int8":
                linear_cls = QuantLinearInt8
67
68
            elif quant_scheme == "fp8":
                linear_cls = QuantLinearFp8
69
70
71
72
73
        else:
            linear_cls = nn.Linear

        self.to_qkv = linear_cls(dim, dim * 3)
        self.proj = linear_cls(dim, dim)
helloyongyang's avatar
helloyongyang committed
74
75
76
77
78
79
80
81
82
83
84

    def forward(self, x):
        """
        x:   [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2)

        # compute attention
Dongz's avatar
Dongz committed
85
        x = attention(q=q, k=k, v=v, attention_type="torch_sdpa")
helloyongyang's avatar
helloyongyang committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        x = x.reshape(b, s, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)
        return x


class SwiGLU(nn.Module):
    def __init__(self, dim, mid_dim):
        super().__init__()
        self.dim = dim
        self.mid_dim = mid_dim
        # layers
        self.fc1 = nn.Linear(dim, mid_dim)
        self.fc2 = nn.Linear(dim, mid_dim)
        self.fc3 = nn.Linear(mid_dim, dim)

    def forward(self, x):
        x = F.silu(self.fc1(x)) * self.fc2(x)
        x = self.fc3(x)
        return x


class AttentionBlock(nn.Module):
111
    def __init__(self, dim, mlp_ratio, num_heads, post_norm=False, causal=False, activation="quick_gelu", attn_dropout=0.0, proj_dropout=0.0, norm_eps=1e-5, quantized=False, quant_scheme=None):
Dongz's avatar
Dongz committed
112
        assert activation in ["quick_gelu", "gelu", "swi_glu"]
helloyongyang's avatar
helloyongyang committed
113
114
115
116
117
118
119
120
121
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.post_norm = post_norm
        self.causal = causal
        self.norm_eps = norm_eps

        # layers
122
123
124
        if quantized:
            if quant_scheme == "int8":
                linear_cls = QuantLinearInt8
125
126
            elif quant_scheme == "fp8":
                linear_cls = QuantLinearFp8
127
128
129
        else:
            linear_cls = nn.Linear

helloyongyang's avatar
helloyongyang committed
130
        self.norm1 = LayerNorm(dim, eps=norm_eps)
131
        self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, proj_dropout, quantized, quant_scheme)
helloyongyang's avatar
helloyongyang committed
132
        self.norm2 = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
133
        if activation == "swi_glu":
helloyongyang's avatar
helloyongyang committed
134
135
            self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
        else:
136
            self.mlp = nn.Sequential(linear_cls(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), linear_cls(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
helloyongyang's avatar
helloyongyang committed
137
138
139
140
141
142
143
144
145
146
147
148

    def forward(self, x):
        if self.post_norm:
            x = x + self.norm1(self.attn(x))
            x = x + self.norm2(self.mlp(x))
        else:
            x = x + self.attn(self.norm1(x))
            x = x + self.mlp(self.norm2(x))
        return x


class AttentionPool(nn.Module):
Dongz's avatar
Dongz committed
149
    def __init__(self, dim, mlp_ratio, num_heads, activation="gelu", proj_dropout=0.0, norm_eps=1e-5):
helloyongyang's avatar
helloyongyang committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.proj_dropout = proj_dropout
        self.norm_eps = norm_eps

        # layers
        gain = 1.0 / math.sqrt(dim)
        self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
        self.to_q = nn.Linear(dim, dim)
        self.to_kv = nn.Linear(dim, dim * 2)
        self.proj = nn.Linear(dim, dim)
        self.norm = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
166
        self.mlp = nn.Sequential(nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
helloyongyang's avatar
helloyongyang committed
167
168
169
170
171
172
173
174
175
176
177
178

    def forward(self, x):
        """
        x:  [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1)
        k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)

        # compute attention
Dongz's avatar
Dongz committed
179
        x = attention(q=q, k=k, v=v, attention_type="torch_sdpa")
helloyongyang's avatar
helloyongyang committed
180
181
182
183
184
185
186
187
188
189
190
191
        x = x.reshape(b, 1, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)

        # mlp
        x = x + self.mlp(self.norm(x))
        return x[:, 0]


class VisionTransformer(nn.Module):
Dongz's avatar
Dongz committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    def __init__(
        self,
        image_size=224,
        patch_size=16,
        dim=768,
        mlp_ratio=4,
        out_dim=512,
        num_heads=12,
        num_layers=12,
        pool_type="token",
        pre_norm=True,
        post_norm=False,
        activation="quick_gelu",
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0,
        norm_eps=1e-5,
209
210
        quantized=False,
        quant_scheme=None,
Dongz's avatar
Dongz committed
211
    ):
helloyongyang's avatar
helloyongyang committed
212
        if image_size % patch_size != 0:
root's avatar
root committed
213
            logger.info("[WARNING] image_size is not divisible by patch_size", flush=True)
Dongz's avatar
Dongz committed
214
        assert pool_type in ("token", "token_fc", "attn_pool")
helloyongyang's avatar
helloyongyang committed
215
216
217
218
        out_dim = out_dim or dim
        super().__init__()
        self.image_size = image_size
        self.patch_size = patch_size
Dongz's avatar
Dongz committed
219
        self.num_patches = (image_size // patch_size) ** 2
helloyongyang's avatar
helloyongyang committed
220
221
222
223
224
225
226
227
228
229
230
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.pool_type = pool_type
        self.post_norm = post_norm
        self.norm_eps = norm_eps

        # embeddings
        gain = 1.0 / math.sqrt(dim)
Dongz's avatar
Dongz committed
231
232
        self.patch_embedding = nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size, bias=not pre_norm)
        if pool_type in ("token", "token_fc"):
helloyongyang's avatar
helloyongyang committed
233
            self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
Dongz's avatar
Dongz committed
234
        self.pos_embedding = nn.Parameter(gain * torch.randn(1, self.num_patches + (1 if pool_type in ("token", "token_fc") else 0), dim))
helloyongyang's avatar
helloyongyang committed
235
236
237
238
        self.dropout = nn.Dropout(embedding_dropout)

        # transformer
        self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
239
240
241
        self.transformer = nn.Sequential(
            *[AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, activation, attn_dropout, proj_dropout, norm_eps, quantized, quant_scheme) for _ in range(num_layers)]
        )
helloyongyang's avatar
helloyongyang committed
242
243
244
        self.post_norm = LayerNorm(dim, eps=norm_eps)

        # head
Dongz's avatar
Dongz committed
245
        if pool_type == "token":
helloyongyang's avatar
helloyongyang committed
246
            self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
Dongz's avatar
Dongz committed
247
        elif pool_type == "token_fc":
helloyongyang's avatar
helloyongyang committed
248
            self.head = nn.Linear(dim, out_dim)
Dongz's avatar
Dongz committed
249
250
        elif pool_type == "attn_pool":
            self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, proj_dropout, norm_eps)
helloyongyang's avatar
helloyongyang committed
251
252
253
254
255
256

    def forward(self, x, interpolation=False, use_31_block=False):
        b = x.size(0)

        # embeddings
        x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
Dongz's avatar
Dongz committed
257
        if self.pool_type in ("token", "token_fc"):
helloyongyang's avatar
helloyongyang committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
            x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1)
        if interpolation:
            e = pos_interpolate(self.pos_embedding, x.size(1))
        else:
            e = self.pos_embedding
        x = self.dropout(x + e)
        if self.pre_norm is not None:
            x = self.pre_norm(x)

        # transformer
        if use_31_block:
            x = self.transformer[:-1](x)
            return x
        else:
            x = self.transformer(x)
            return x


class XLMRobertaCLIP(nn.Module):
Dongz's avatar
Dongz committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def __init__(
        self,
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
        vision_pool="token",
        vision_pre_norm=True,
        vision_post_norm=False,
        activation="gelu",
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0,
        norm_eps=1e-5,
298
299
        quantized=False,
        quant_scheme=None,
Dongz's avatar
Dongz committed
300
    ):
helloyongyang's avatar
helloyongyang committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        super().__init__()
        self.embed_dim = embed_dim
        self.image_size = image_size
        self.patch_size = patch_size
        self.vision_dim = vision_dim
        self.vision_mlp_ratio = vision_mlp_ratio
        self.vision_heads = vision_heads
        self.vision_layers = vision_layers
        self.vision_pre_norm = vision_pre_norm
        self.vision_post_norm = vision_post_norm
        self.activation = activation
        self.vocab_size = vocab_size
        self.max_text_len = max_text_len
        self.type_size = type_size
        self.pad_id = pad_id
        self.norm_eps = norm_eps

        # models
        self.visual = VisionTransformer(
            image_size=image_size,
            patch_size=patch_size,
            dim=vision_dim,
            mlp_ratio=vision_mlp_ratio,
            out_dim=embed_dim,
            num_heads=vision_heads,
            num_layers=vision_layers,
            pool_type=vision_pool,
            pre_norm=vision_pre_norm,
            post_norm=vision_post_norm,
            activation=activation,
            attn_dropout=attn_dropout,
            proj_dropout=proj_dropout,
            embedding_dropout=embedding_dropout,
Dongz's avatar
Dongz committed
334
            norm_eps=norm_eps,
335
336
            quantized=quantized,
            quant_scheme=quant_scheme,
Dongz's avatar
Dongz committed
337
        )
helloyongyang's avatar
helloyongyang committed
338
339
340
        self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))


Dongz's avatar
Dongz committed
341
def _clip(pretrained=False, pretrained_name=None, model_cls=XLMRobertaCLIP, return_transforms=False, return_tokenizer=False, tokenizer_padding="eos", dtype=torch.float32, device="cpu", **kwargs):
helloyongyang's avatar
helloyongyang committed
342
343
344
345
346
347
348
349
350
351
352
    # init a model on device
    with torch.device(device):
        model = model_cls(**kwargs)

    # set device
    model = model.to(dtype=dtype, device=device)
    output = (model,)

    # init transforms
    if return_transforms:
        # mean and std
Dongz's avatar
Dongz committed
353
        if "siglip" in pretrained_name.lower():
helloyongyang's avatar
helloyongyang committed
354
355
356
357
358
359
            mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
        else:
            mean = [0.48145466, 0.4578275, 0.40821073]
            std = [0.26862954, 0.26130258, 0.27577711]

        # transforms
Dongz's avatar
Dongz committed
360
        transforms = T.Compose([T.Resize((model.image_size, model.image_size), interpolation=T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=mean, std=std)])
helloyongyang's avatar
helloyongyang committed
361
362
363
364
        output += (transforms,)
    return output[0] if len(output) == 1 else output


Dongz's avatar
Dongz committed
365
def clip_xlm_roberta_vit_h_14(pretrained=False, pretrained_name="open-clip-xlm-roberta-large-vit-huge-14", **kwargs):
helloyongyang's avatar
helloyongyang committed
366
367
368
369
370
371
372
373
    cfg = dict(
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
Dongz's avatar
Dongz committed
374
375
        vision_pool="token",
        activation="gelu",
helloyongyang's avatar
helloyongyang committed
376
377
378
379
380
381
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        attn_dropout=0.0,
        proj_dropout=0.0,
Dongz's avatar
Dongz committed
382
383
        embedding_dropout=0.0,
    )
helloyongyang's avatar
helloyongyang committed
384
385
386
387
388
    cfg.update(**kwargs)
    return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)


class CLIPModel:
389
    def __init__(self, dtype, device, checkpoint_path, clip_quantized, clip_quantized_ckpt, quant_scheme):
helloyongyang's avatar
helloyongyang committed
390
391
        self.dtype = dtype
        self.device = device
392
393
394
395
396
397
398
        self.quantized = clip_quantized
        if self.quantized:
            self.checkpoint_path = clip_quantized_ckpt
        else:
            self.checkpoint_path = checkpoint_path

        logger.info(f"Loading weights from {self.checkpoint_path}")
helloyongyang's avatar
helloyongyang committed
399
400

        # init model
401
402
403
        self.model, self.transforms = clip_xlm_roberta_vit_h_14(
            pretrained=False, return_transforms=True, return_tokenizer=False, dtype=dtype, device=device, quantized=self.quantized, quant_scheme=quant_scheme
        )
helloyongyang's avatar
helloyongyang committed
404
405
        self.model = self.model.eval().requires_grad_(False)

406
407
408
409
410
411
        weight_dict = torch.load(self.checkpoint_path, map_location="cpu", weights_only=True)
        keys = list(weight_dict.keys())
        for key in keys:
            if "textual" in key:
                weight_dict.pop(key)
        self.model.load_state_dict(weight_dict)
helloyongyang's avatar
helloyongyang committed
412

gushiqiao's avatar
gushiqiao committed
413
414
415
    def visual(self, videos, args):
        if args.cpu_offload:
            self.to_cuda()
helloyongyang's avatar
helloyongyang committed
416
417
        # preprocess
        size = (self.model.image_size,) * 2
Dongz's avatar
Dongz committed
418
        videos = torch.cat([F.interpolate(u.transpose(0, 1), size=size, mode="bicubic", align_corners=False) for u in videos])
helloyongyang's avatar
helloyongyang committed
419
420
421
        videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))

        # forward
Dongz's avatar
Dongz committed
422
        with torch.amp.autocast("cuda", dtype=self.dtype):
helloyongyang's avatar
helloyongyang committed
423
            out = self.model.visual(videos, use_31_block=True)
gushiqiao's avatar
gushiqiao committed
424
425
426
427
428
429
430
431
432
433

        if args.cpu_offload:
            self.to_cpu()
        return out

    def to_cuda(self):
        self.model = self.model.cuda()

    def to_cpu(self):
        self.model = self.model.cpu()
wangshankun's avatar
wangshankun committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497


class WanVideoIPHandler:

    def __init__(self,
                 model_name,
                 repo_or_path,
                 require_grad=False,
                 mode='eval',
                 device='cuda',
                 dtype=torch.float16):
        # image_processor = CLIPImageProcessor.from_pretrained(
        #     repo_or_path, subfolder='image_processor')
        ''' 720P-I2V-diffusers config is
            "size": {
                "shortest_edge": 224
            }
        and 480P-I2V-diffusers config is
          "size": {
            "height": 224,
            "width": 224
        }
        but Wan2.1 official use no_crop resize by default
        so I don't use CLIPImageProcessor
        '''
        image_encoder = CLIPVisionModel.from_pretrained(
            repo_or_path, subfolder='image_encoder', torch_dtype=dtype)
        logger.info(
            f'Using image encoder {model_name} from {repo_or_path}'
        )
        image_encoder.requires_grad_(require_grad)
        if mode == 'eval':
            image_encoder.eval()
        else:
            image_encoder.train()
        self.dtype = dtype
        self.device = device
        self.image_encoder = image_encoder.to(device=device, dtype=dtype)
        self.size = (224, 224)
        mean = [0.48145466, 0.4578275, 0.40821073]
        std = [0.26862954, 0.26130258, 0.27577711]
        self.normalize = T.Normalize(mean=mean, std=std)
        # self.image_processor = image_processor

    def encode(
        self,
        img_tensor: Tensor,
    ):
        if img_tensor.ndim == 5:  # B C T H W
            # img_tensor = img_tensor[:, :, 0]
            img_tensor = rearrange(img_tensor, "B C 1 H W -> B C H W")
        img_tensor = torch.clamp(
            img_tensor.float() * 0.5 + 0.5, min=0.0, max=1.0).to(self.device)
        img_tensor = F.interpolate(
            img_tensor, size=self.size, mode='bicubic', align_corners=False)
        img_tensor = self.normalize(img_tensor).to(self.dtype)
 
        logger.info(
            f'Image tensor shape after processing: {img_tensor}')
        image_embeds = self.image_encoder(
            pixel_values=img_tensor, output_hidden_states=True)
        logger.info(
            f'Image embeds : {image_embeds.hidden_states[-1]}')
        return image_embeds.hidden_states[-1]