model.py 13.9 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
# Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip''
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T

from lightx2v.attentions import attention
root's avatar
root committed
12
from loguru import logger
13
from lightx2v.models.input_encoders.hf.q_linear import QuantLinearInt8
helloyongyang's avatar
helloyongyang committed
14
15
16


__all__ = [
Dongz's avatar
Dongz committed
17
18
19
    "XLMRobertaCLIP",
    "clip_xlm_roberta_vit_h_14",
    "CLIPModel",
helloyongyang's avatar
helloyongyang committed
20
21
22
23
24
25
26
27
28
29
]


def pos_interpolate(pos, seq_len):
    if pos.size(1) == seq_len:
        return pos
    else:
        src_grid = int(math.sqrt(pos.size(1)))
        tar_grid = int(math.sqrt(seq_len))
        n = pos.size(1) - src_grid * src_grid
Dongz's avatar
Dongz committed
30
31
32
33
34
35
36
        return torch.cat(
            [
                pos[:, :n],
                F.interpolate(pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(0, 3, 1, 2), size=(tar_grid, tar_grid), mode="bicubic", align_corners=False).flatten(2).transpose(1, 2),
            ],
            dim=1,
        )
helloyongyang's avatar
helloyongyang committed
37
38
39
40
41
42
43
44
45
46
47
48
49


class QuickGELU(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(1.702 * x)


class LayerNorm(nn.LayerNorm):
    def forward(self, x):
        return super().forward(x.float()).type_as(x)


class SelfAttention(nn.Module):
50
    def __init__(self, dim, num_heads, causal=False, attn_dropout=0.0, proj_dropout=0.0, quantized=False, quant_scheme=None):
helloyongyang's avatar
helloyongyang committed
51
52
53
54
55
56
57
58
59
60
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.causal = causal
        self.attn_dropout = attn_dropout
        self.proj_dropout = proj_dropout

        # layers
61
62
63
64
65
66
67
68
        if quantized:
            if quant_scheme == "int8":
                linear_cls = QuantLinearInt8
        else:
            linear_cls = nn.Linear

        self.to_qkv = linear_cls(dim, dim * 3)
        self.proj = linear_cls(dim, dim)
helloyongyang's avatar
helloyongyang committed
69
70
71
72
73
74
75
76
77
78
79

    def forward(self, x):
        """
        x:   [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2)

        # compute attention
Dongz's avatar
Dongz committed
80
        x = attention(q=q, k=k, v=v, attention_type="torch_sdpa")
helloyongyang's avatar
helloyongyang committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        x = x.reshape(b, s, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)
        return x


class SwiGLU(nn.Module):
    def __init__(self, dim, mid_dim):
        super().__init__()
        self.dim = dim
        self.mid_dim = mid_dim
        # layers
        self.fc1 = nn.Linear(dim, mid_dim)
        self.fc2 = nn.Linear(dim, mid_dim)
        self.fc3 = nn.Linear(mid_dim, dim)

    def forward(self, x):
        x = F.silu(self.fc1(x)) * self.fc2(x)
        x = self.fc3(x)
        return x


class AttentionBlock(nn.Module):
106
    def __init__(self, dim, mlp_ratio, num_heads, post_norm=False, causal=False, activation="quick_gelu", attn_dropout=0.0, proj_dropout=0.0, norm_eps=1e-5, quantized=False, quant_scheme=None):
Dongz's avatar
Dongz committed
107
        assert activation in ["quick_gelu", "gelu", "swi_glu"]
helloyongyang's avatar
helloyongyang committed
108
109
110
111
112
113
114
115
116
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.post_norm = post_norm
        self.causal = causal
        self.norm_eps = norm_eps

        # layers
117
118
119
120
121
122
        if quantized:
            if quant_scheme == "int8":
                linear_cls = QuantLinearInt8
        else:
            linear_cls = nn.Linear

helloyongyang's avatar
helloyongyang committed
123
        self.norm1 = LayerNorm(dim, eps=norm_eps)
124
        self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, proj_dropout, quantized, quant_scheme)
helloyongyang's avatar
helloyongyang committed
125
        self.norm2 = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
126
        if activation == "swi_glu":
helloyongyang's avatar
helloyongyang committed
127
128
            self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
        else:
129
            self.mlp = nn.Sequential(linear_cls(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), linear_cls(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
helloyongyang's avatar
helloyongyang committed
130
131
132
133
134
135
136
137
138
139
140
141

    def forward(self, x):
        if self.post_norm:
            x = x + self.norm1(self.attn(x))
            x = x + self.norm2(self.mlp(x))
        else:
            x = x + self.attn(self.norm1(x))
            x = x + self.mlp(self.norm2(x))
        return x


class AttentionPool(nn.Module):
Dongz's avatar
Dongz committed
142
    def __init__(self, dim, mlp_ratio, num_heads, activation="gelu", proj_dropout=0.0, norm_eps=1e-5):
helloyongyang's avatar
helloyongyang committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.proj_dropout = proj_dropout
        self.norm_eps = norm_eps

        # layers
        gain = 1.0 / math.sqrt(dim)
        self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
        self.to_q = nn.Linear(dim, dim)
        self.to_kv = nn.Linear(dim, dim * 2)
        self.proj = nn.Linear(dim, dim)
        self.norm = LayerNorm(dim, eps=norm_eps)
Dongz's avatar
Dongz committed
159
        self.mlp = nn.Sequential(nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout))
helloyongyang's avatar
helloyongyang committed
160
161
162
163
164
165
166
167
168
169
170
171

    def forward(self, x):
        """
        x:  [B, L, C].
        """
        b, s, c, n, d = *x.size(), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1)
        k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)

        # compute attention
Dongz's avatar
Dongz committed
172
        x = attention(q=q, k=k, v=v, attention_type="torch_sdpa")
helloyongyang's avatar
helloyongyang committed
173
174
175
176
177
178
179
180
181
182
183
184
        x = x.reshape(b, 1, c)

        # output
        x = self.proj(x)
        x = F.dropout(x, self.proj_dropout, self.training)

        # mlp
        x = x + self.mlp(self.norm(x))
        return x[:, 0]


class VisionTransformer(nn.Module):
Dongz's avatar
Dongz committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def __init__(
        self,
        image_size=224,
        patch_size=16,
        dim=768,
        mlp_ratio=4,
        out_dim=512,
        num_heads=12,
        num_layers=12,
        pool_type="token",
        pre_norm=True,
        post_norm=False,
        activation="quick_gelu",
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0,
        norm_eps=1e-5,
202
203
        quantized=False,
        quant_scheme=None,
Dongz's avatar
Dongz committed
204
    ):
helloyongyang's avatar
helloyongyang committed
205
        if image_size % patch_size != 0:
root's avatar
root committed
206
            logger.info("[WARNING] image_size is not divisible by patch_size", flush=True)
Dongz's avatar
Dongz committed
207
        assert pool_type in ("token", "token_fc", "attn_pool")
helloyongyang's avatar
helloyongyang committed
208
209
210
211
        out_dim = out_dim or dim
        super().__init__()
        self.image_size = image_size
        self.patch_size = patch_size
Dongz's avatar
Dongz committed
212
        self.num_patches = (image_size // patch_size) ** 2
helloyongyang's avatar
helloyongyang committed
213
214
215
216
217
218
219
220
221
222
223
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.pool_type = pool_type
        self.post_norm = post_norm
        self.norm_eps = norm_eps

        # embeddings
        gain = 1.0 / math.sqrt(dim)
Dongz's avatar
Dongz committed
224
225
        self.patch_embedding = nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size, bias=not pre_norm)
        if pool_type in ("token", "token_fc"):
helloyongyang's avatar
helloyongyang committed
226
            self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim))
Dongz's avatar
Dongz committed
227
        self.pos_embedding = nn.Parameter(gain * torch.randn(1, self.num_patches + (1 if pool_type in ("token", "token_fc") else 0), dim))
helloyongyang's avatar
helloyongyang committed
228
229
230
231
        self.dropout = nn.Dropout(embedding_dropout)

        # transformer
        self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
232
233
234
        self.transformer = nn.Sequential(
            *[AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, activation, attn_dropout, proj_dropout, norm_eps, quantized, quant_scheme) for _ in range(num_layers)]
        )
helloyongyang's avatar
helloyongyang committed
235
236
237
        self.post_norm = LayerNorm(dim, eps=norm_eps)

        # head
Dongz's avatar
Dongz committed
238
        if pool_type == "token":
helloyongyang's avatar
helloyongyang committed
239
            self.head = nn.Parameter(gain * torch.randn(dim, out_dim))
Dongz's avatar
Dongz committed
240
        elif pool_type == "token_fc":
helloyongyang's avatar
helloyongyang committed
241
            self.head = nn.Linear(dim, out_dim)
Dongz's avatar
Dongz committed
242
243
        elif pool_type == "attn_pool":
            self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, proj_dropout, norm_eps)
helloyongyang's avatar
helloyongyang committed
244
245
246
247
248
249

    def forward(self, x, interpolation=False, use_31_block=False):
        b = x.size(0)

        # embeddings
        x = self.patch_embedding(x).flatten(2).permute(0, 2, 1)
Dongz's avatar
Dongz committed
250
        if self.pool_type in ("token", "token_fc"):
helloyongyang's avatar
helloyongyang committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1)
        if interpolation:
            e = pos_interpolate(self.pos_embedding, x.size(1))
        else:
            e = self.pos_embedding
        x = self.dropout(x + e)
        if self.pre_norm is not None:
            x = self.pre_norm(x)

        # transformer
        if use_31_block:
            x = self.transformer[:-1](x)
            return x
        else:
            x = self.transformer(x)
            return x


class XLMRobertaCLIP(nn.Module):
Dongz's avatar
Dongz committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    def __init__(
        self,
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
        vision_pool="token",
        vision_pre_norm=True,
        vision_post_norm=False,
        activation="gelu",
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        attn_dropout=0.0,
        proj_dropout=0.0,
        embedding_dropout=0.0,
        norm_eps=1e-5,
291
292
        quantized=False,
        quant_scheme=None,
Dongz's avatar
Dongz committed
293
    ):
helloyongyang's avatar
helloyongyang committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        super().__init__()
        self.embed_dim = embed_dim
        self.image_size = image_size
        self.patch_size = patch_size
        self.vision_dim = vision_dim
        self.vision_mlp_ratio = vision_mlp_ratio
        self.vision_heads = vision_heads
        self.vision_layers = vision_layers
        self.vision_pre_norm = vision_pre_norm
        self.vision_post_norm = vision_post_norm
        self.activation = activation
        self.vocab_size = vocab_size
        self.max_text_len = max_text_len
        self.type_size = type_size
        self.pad_id = pad_id
        self.norm_eps = norm_eps

        # models
        self.visual = VisionTransformer(
            image_size=image_size,
            patch_size=patch_size,
            dim=vision_dim,
            mlp_ratio=vision_mlp_ratio,
            out_dim=embed_dim,
            num_heads=vision_heads,
            num_layers=vision_layers,
            pool_type=vision_pool,
            pre_norm=vision_pre_norm,
            post_norm=vision_post_norm,
            activation=activation,
            attn_dropout=attn_dropout,
            proj_dropout=proj_dropout,
            embedding_dropout=embedding_dropout,
Dongz's avatar
Dongz committed
327
            norm_eps=norm_eps,
328
329
            quantized=quantized,
            quant_scheme=quant_scheme,
Dongz's avatar
Dongz committed
330
        )
helloyongyang's avatar
helloyongyang committed
331
332
333
        self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([]))


Dongz's avatar
Dongz committed
334
def _clip(pretrained=False, pretrained_name=None, model_cls=XLMRobertaCLIP, return_transforms=False, return_tokenizer=False, tokenizer_padding="eos", dtype=torch.float32, device="cpu", **kwargs):
helloyongyang's avatar
helloyongyang committed
335
336
337
338
339
340
341
342
343
344
345
    # init a model on device
    with torch.device(device):
        model = model_cls(**kwargs)

    # set device
    model = model.to(dtype=dtype, device=device)
    output = (model,)

    # init transforms
    if return_transforms:
        # mean and std
Dongz's avatar
Dongz committed
346
        if "siglip" in pretrained_name.lower():
helloyongyang's avatar
helloyongyang committed
347
348
349
350
351
352
            mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
        else:
            mean = [0.48145466, 0.4578275, 0.40821073]
            std = [0.26862954, 0.26130258, 0.27577711]

        # transforms
Dongz's avatar
Dongz committed
353
        transforms = T.Compose([T.Resize((model.image_size, model.image_size), interpolation=T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=mean, std=std)])
helloyongyang's avatar
helloyongyang committed
354
355
356
357
        output += (transforms,)
    return output[0] if len(output) == 1 else output


Dongz's avatar
Dongz committed
358
def clip_xlm_roberta_vit_h_14(pretrained=False, pretrained_name="open-clip-xlm-roberta-large-vit-huge-14", **kwargs):
helloyongyang's avatar
helloyongyang committed
359
360
361
362
363
364
365
366
    cfg = dict(
        embed_dim=1024,
        image_size=224,
        patch_size=14,
        vision_dim=1280,
        vision_mlp_ratio=4,
        vision_heads=16,
        vision_layers=32,
Dongz's avatar
Dongz committed
367
368
        vision_pool="token",
        activation="gelu",
helloyongyang's avatar
helloyongyang committed
369
370
371
372
373
374
        vocab_size=250002,
        max_text_len=514,
        type_size=1,
        pad_id=1,
        attn_dropout=0.0,
        proj_dropout=0.0,
Dongz's avatar
Dongz committed
375
376
        embedding_dropout=0.0,
    )
helloyongyang's avatar
helloyongyang committed
377
378
379
380
381
    cfg.update(**kwargs)
    return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg)


class CLIPModel:
382
    def __init__(self, dtype, device, checkpoint_path, clip_quantized, clip_quantized_ckpt, quant_scheme):
helloyongyang's avatar
helloyongyang committed
383
384
        self.dtype = dtype
        self.device = device
385
386
387
388
389
390
391
        self.quantized = clip_quantized
        if self.quantized:
            self.checkpoint_path = clip_quantized_ckpt
        else:
            self.checkpoint_path = checkpoint_path

        logger.info(f"Loading weights from {self.checkpoint_path}")
helloyongyang's avatar
helloyongyang committed
392
393

        # init model
394
395
396
        self.model, self.transforms = clip_xlm_roberta_vit_h_14(
            pretrained=False, return_transforms=True, return_tokenizer=False, dtype=dtype, device=device, quantized=self.quantized, quant_scheme=quant_scheme
        )
helloyongyang's avatar
helloyongyang committed
397
398
        self.model = self.model.eval().requires_grad_(False)

399
400
401
402
403
404
        weight_dict = torch.load(self.checkpoint_path, map_location="cpu", weights_only=True)
        keys = list(weight_dict.keys())
        for key in keys:
            if "textual" in key:
                weight_dict.pop(key)
        self.model.load_state_dict(weight_dict)
helloyongyang's avatar
helloyongyang committed
405

gushiqiao's avatar
gushiqiao committed
406
407
408
    def visual(self, videos, args):
        if args.cpu_offload:
            self.to_cuda()
helloyongyang's avatar
helloyongyang committed
409
410
        # preprocess
        size = (self.model.image_size,) * 2
Dongz's avatar
Dongz committed
411
        videos = torch.cat([F.interpolate(u.transpose(0, 1), size=size, mode="bicubic", align_corners=False) for u in videos])
helloyongyang's avatar
helloyongyang committed
412
413
414
        videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))

        # forward
Dongz's avatar
Dongz committed
415
        with torch.amp.autocast("cuda", dtype=self.dtype):
helloyongyang's avatar
helloyongyang committed
416
            out = self.model.visual(videos, use_31_block=True)
gushiqiao's avatar
gushiqiao committed
417
418
419
420
421
422
423
424
425
426

        if args.cpu_offload:
            self.to_cpu()
        return out

    def to_cuda(self):
        self.model = self.model.cuda()

    def to_cpu(self):
        self.model = self.model.cpu()