utils.py 16.3 KB
Newer Older
PengGao's avatar
PengGao committed
1
import glob
helloyongyang's avatar
helloyongyang committed
2
import os
PengGao's avatar
PengGao committed
3
4
import random
import subprocess
PengGao's avatar
PengGao committed
5
6
from typing import Optional

PengGao's avatar
PengGao committed
7
8
9
import imageio
import imageio_ffmpeg as ffmpeg
import numpy as np
10
import safetensors
helloyongyang's avatar
helloyongyang committed
11
import torch
12
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
13
import torchvision
14
15
from einops import rearrange
from loguru import logger
helloyongyang's avatar
helloyongyang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


def seed_all(seed):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
    """save videos by video tensor
       copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61

    Args:
        videos (torch.Tensor): video tensor predicted by the model
        path (str): path to save video
        rescale (bool, optional): rescale the video tensor from [-1, 1] to  . Defaults to False.
        n_rows (int, optional): Defaults to 1.
        fps (int, optional): video save fps. Defaults to 8.
    """
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = torch.clamp(x, 0, 1)
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)


def cache_video(
    tensor,
PengGao's avatar
PengGao committed
57
    save_file: str,
helloyongyang's avatar
helloyongyang committed
58
59
60
61
62
63
64
    fps=30,
    suffix=".mp4",
    nrow=8,
    normalize=True,
    value_range=(-1, 1),
    retry=5,
):
GoatWu's avatar
GoatWu committed
65
66
67
68
69
70
71
72
    save_dir = os.path.dirname(save_file)
    try:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir, exist_ok=True)
    except Exception as e:
        logger.error(f"Failed to create directory: {save_dir}, error: {e}")
        return None

helloyongyang's avatar
helloyongyang committed
73
74
75
76
77
78
79
    cache_file = save_file

    # save to cache
    error = None
    for _ in range(retry):
        try:
            # preprocess
PengGao's avatar
PengGao committed
80
            tensor = tensor.clamp(min(value_range), max(value_range))  # type: ignore
helloyongyang's avatar
helloyongyang committed
81
            tensor = torch.stack(
Dongz's avatar
Dongz committed
82
                [torchvision.utils.make_grid(u, nrow=nrow, normalize=normalize, value_range=value_range) for u in tensor.unbind(2)],
helloyongyang's avatar
helloyongyang committed
83
84
85
86
87
88
89
90
91
                dim=1,
            ).permute(1, 2, 3, 0)
            tensor = (tensor * 255).type(torch.uint8).cpu()

            # write video
            writer = imageio.get_writer(cache_file, fps=fps, codec="libx264", quality=8)
            for frame in tensor.numpy():
                writer.append_data(frame)
            writer.close()
gushiqiao's avatar
gushiqiao committed
92
93
            del tensor
            torch.cuda.empty_cache()
helloyongyang's avatar
helloyongyang committed
94
95
96
97
98
            return cache_file
        except Exception as e:
            error = e
            continue
    else:
root's avatar
root committed
99
        logger.info(f"cache_video failed, error: {error}", flush=True)
helloyongyang's avatar
helloyongyang committed
100
        return None
PengGao's avatar
PengGao committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159


def vae_to_comfyui_image(vae_output: torch.Tensor) -> torch.Tensor:
    """
    Convert VAE decoder output to ComfyUI Image format

    Args:
        vae_output: VAE decoder output tensor, typically in range [-1, 1]
                    Shape: [B, C, T, H, W] or [B, C, H, W]

    Returns:
        ComfyUI Image tensor in range [0, 1]
        Shape: [B, H, W, C] for single frame or [B*T, H, W, C] for video
    """
    # Handle video tensor (5D) vs image tensor (4D)
    if vae_output.dim() == 5:
        # Video tensor: [B, C, T, H, W]
        B, C, T, H, W = vae_output.shape
        # Reshape to [B*T, C, H, W] for processing
        vae_output = vae_output.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)

    # Normalize from [-1, 1] to [0, 1]
    images = (vae_output + 1) / 2

    # Clamp values to [0, 1]
    images = torch.clamp(images, 0, 1)

    # Convert from [B, C, H, W] to [B, H, W, C]
    images = images.permute(0, 2, 3, 1).cpu()

    return images


def save_to_video(
    images: torch.Tensor,
    output_path: str,
    fps: float = 24.0,
    method: str = "imageio",
    lossless: bool = False,
    output_pix_fmt: Optional[str] = "yuv420p",
) -> None:
    """
    Save ComfyUI Image tensor to video file

    Args:
        images: ComfyUI Image tensor [N, H, W, C] in range [0, 1]
        output_path: Path to save the video
        fps: Frames per second
        method: Save method - "imageio" or "ffmpeg"
        lossless: Whether to use lossless encoding (ffmpeg method only)
        output_pix_fmt: Pixel format for output (ffmpeg method only)
    """
    assert images.dim() == 4 and images.shape[-1] == 3, "Input must be [N, H, W, C] with C=3"

    # Ensure output directory exists
    os.makedirs(os.path.dirname(output_path) or ".", exist_ok=True)

    if method == "imageio":
        # Convert to uint8
160
161
        # frames = (images * 255).cpu().numpy().astype(np.uint8)
        frames = (images * 255).to(torch.uint8).cpu().numpy()
PengGao's avatar
PengGao committed
162
163
164
165
        imageio.mimsave(output_path, frames, fps=fps)  # type: ignore

    elif method == "ffmpeg":
        # Convert to numpy and scale to [0, 255]
166
167
        # frames = (images * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
        frames = (images * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
PengGao's avatar
PengGao committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

        # Convert RGB to BGR for OpenCV/FFmpeg
        frames = frames[..., ::-1].copy()

        N, height, width, _ = frames.shape

        # Ensure even dimensions for x264
        width += width % 2
        height += height % 2

        # Get ffmpeg executable from imageio_ffmpeg
        ffmpeg_exe = ffmpeg.get_ffmpeg_exe()

        if lossless:
            command = [
                ffmpeg_exe,
                "-y",  # Overwrite output file if it exists
                "-f",
                "rawvideo",
                "-s",
                f"{int(width)}x{int(height)}",
                "-pix_fmt",
                "bgr24",
                "-r",
                f"{fps}",
                "-loglevel",
                "error",
                "-threads",
                "4",
                "-i",
                "-",  # Input from pipe
                "-vcodec",
                "libx264rgb",
                "-crf",
                "0",
                "-an",  # No audio
                output_path,
            ]
        else:
            command = [
                ffmpeg_exe,
                "-y",  # Overwrite output file if it exists
                "-f",
                "rawvideo",
                "-s",
                f"{int(width)}x{int(height)}",
                "-pix_fmt",
                "bgr24",
                "-r",
                f"{fps}",
                "-loglevel",
                "error",
                "-threads",
                "4",
                "-i",
                "-",  # Input from pipe
                "-vcodec",
                "libx264",
                "-pix_fmt",
                output_pix_fmt,
                "-an",  # No audio
                output_path,
            ]

        # Run FFmpeg
        process = subprocess.Popen(
            command,
            stdin=subprocess.PIPE,
            stderr=subprocess.PIPE,
        )

        if process.stdin is None:
            raise BrokenPipeError("No stdin buffer received.")

        # Write frames to FFmpeg
        for frame in frames:
            # Pad frame if needed
            if frame.shape[0] < height or frame.shape[1] < width:
                padded = np.zeros((height, width, 3), dtype=np.uint8)
                padded[: frame.shape[0], : frame.shape[1]] = frame
                frame = padded
            process.stdin.write(frame.tobytes())

        process.stdin.close()
        process.wait()

        if process.returncode != 0:
            error_output = process.stderr.read().decode() if process.stderr else "Unknown error"
            raise RuntimeError(f"FFmpeg failed with error: {error_output}")

    else:
        raise ValueError(f"Unknown save method: {method}")
260
261


262
def find_torch_model_path(config, ckpt_config_key=None, filename=None, subdir=["original", "fp8", "int8", "distill_models", "distill_fp8", "distill_int8"]):
263
264
265
266
267
268
    if ckpt_config_key and config.get(ckpt_config_key, None) is not None:
        return config.get(ckpt_config_key)

    paths_to_check = [
        os.path.join(config.model_path, filename),
    ]
gushiqiao's avatar
gushiqiao committed
269
270
    if isinstance(subdir, list):
        for sub in subdir:
271
            paths_to_check.insert(0, os.path.join(config.model_path, sub, filename))
gushiqiao's avatar
gushiqiao committed
272
    else:
273
        paths_to_check.insert(0, os.path.join(config.model_path, subdir, filename))
gushiqiao's avatar
gushiqiao committed
274

275
276
277
278
279
280
    for path in paths_to_check:
        if os.path.exists(path):
            return path
    raise FileNotFoundError(f"PyTorch model file '{filename}' not found.\nPlease download the model from https://huggingface.co/lightx2v/ or specify the model path in the configuration file.")


281
def find_hf_model_path(config, model_path, ckpt_config_key=None, subdir=["original", "fp8", "int8", "distill_models", "distill_fp8", "distill_int8"]):
282
283
284
    if ckpt_config_key and config.get(ckpt_config_key, None) is not None:
        return config.get(ckpt_config_key)

helloyongyang's avatar
helloyongyang committed
285
    paths_to_check = [model_path]
gushiqiao's avatar
gushiqiao committed
286
287
    if isinstance(subdir, list):
        for sub in subdir:
288
            paths_to_check.insert(0, os.path.join(model_path, sub))
gushiqiao's avatar
gushiqiao committed
289
    else:
290
        paths_to_check.insert(0, os.path.join(model_path, subdir))
291
292
293
294
295
296
    for path in paths_to_check:
        safetensors_pattern = os.path.join(path, "*.safetensors")
        safetensors_files = glob.glob(safetensors_pattern)
        if safetensors_files:
            return path
    raise FileNotFoundError(f"No Hugging Face model files (.safetensors) found.\nPlease download the model from: https://huggingface.co/lightx2v/ or specify the model path in the configuration file.")
297
298


299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def find_gguf_model_path(config, ckpt_config_key=None, subdir=None):
    gguf_path = config.get(ckpt_config_key, None)
    if gguf_path is None:
        raise ValueError(f"GGUF path not found in config with key '{ckpt_config_key}'")
    if not isinstance(gguf_path, str) or not gguf_path.endswith(".gguf"):
        raise ValueError(f"GGUF path must be a string ending with '.gguf', got: {gguf_path}")
    if os.sep in gguf_path or (os.altsep and os.altsep in gguf_path):
        if os.path.exists(gguf_path):
            logger.info(f"Found GGUF model file in: {gguf_path}")
            return os.path.abspath(gguf_path)
        else:
            raise FileNotFoundError(f"GGUF file not found at path: {gguf_path}")
    else:
        # It's just a filename, search in predefined paths
        paths_to_check = [config.model_path]
        if subdir:
            paths_to_check.append(os.path.join(config.model_path, subdir))

        for path in paths_to_check:
            gguf_file_path = os.path.join(path, gguf_path)
            gguf_file = glob.glob(gguf_file_path)
            if gguf_file:
                logger.info(f"Found GGUF model file in: {gguf_file_path}")
                return gguf_file_path

    raise FileNotFoundError(f"No GGUF model files (.gguf) found.\nPlease download the model from: https://huggingface.co/lightx2v/ or specify the model path in the configuration file.")


gushiqiao's avatar
gushiqiao committed
327
def load_safetensors(in_path, remove_key):
328
    if os.path.isdir(in_path):
gushiqiao's avatar
gushiqiao committed
329
        return load_safetensors_from_dir(in_path, remove_key)
330
    elif os.path.isfile(in_path):
gushiqiao's avatar
gushiqiao committed
331
        return load_safetensors_from_path(in_path, remove_key)
332
333
334
335
    else:
        raise ValueError(f"{in_path} does not exist")


gushiqiao's avatar
gushiqiao committed
336
def load_safetensors_from_path(in_path, remove_key):
337
338
339
    tensors = {}
    with safetensors.safe_open(in_path, framework="pt", device="cpu") as f:
        for key in f.keys():
gushiqiao's avatar
gushiqiao committed
340
341
            if remove_key not in key:
                tensors[key] = f.get_tensor(key)
342
343
344
    return tensors


gushiqiao's avatar
gushiqiao committed
345
def load_safetensors_from_dir(in_dir, remove_key):
346
347
348
349
    tensors = {}
    safetensors = os.listdir(in_dir)
    safetensors = [f for f in safetensors if f.endswith(".safetensors")]
    for f in safetensors:
gushiqiao's avatar
gushiqiao committed
350
        tensors.update(load_safetensors_from_path(os.path.join(in_dir, f), remove_key))
351
352
353
    return tensors


gushiqiao's avatar
gushiqiao committed
354
def load_pt_safetensors(in_path, remove_key):
355
356
357
    ext = os.path.splitext(in_path)[-1]
    if ext in (".pt", ".pth", ".tar"):
        state_dict = torch.load(in_path, map_location="cpu", weights_only=True)
gushiqiao's avatar
gushiqiao committed
358
359
360
        for key in list(state_dict.keys()):
            if remove_key and remove_key in key:
                state_dict.pop(key)
361
    else:
gushiqiao's avatar
gushiqiao committed
362
        state_dict = load_safetensors(in_path, remove_key)
363
364
365
    return state_dict


366
def load_weights(checkpoint_path, cpu_offload=False, remove_key=None, load_from_rank0=False):
gushiqiao's avatar
gushiqiao committed
367
    if not dist.is_initialized() or not load_from_rank0:
gushiqiao's avatar
gushiqiao committed
368
        # Single GPU mode
369
        logger.info(f"Loading weights from {checkpoint_path}")
gushiqiao's avatar
gushiqiao committed
370
        cpu_weight_dict = load_pt_safetensors(checkpoint_path, remove_key)
gushiqiao's avatar
Fix  
gushiqiao committed
371
        return cpu_weight_dict
372

gushiqiao's avatar
gushiqiao committed
373
    # Multi-GPU mode
gushiqiao's avatar
gushiqiao committed
374
    is_weight_loader = False
375
    current_rank = dist.get_rank()
gushiqiao's avatar
gushiqiao committed
376
377
    if current_rank == 0:
        is_weight_loader = True
378
379

    cpu_weight_dict = {}
gushiqiao's avatar
Fix  
gushiqiao committed
380
    if is_weight_loader:
381
        logger.info(f"Loading weights from {checkpoint_path}")
LiangLiu's avatar
LiangLiu committed
382
        cpu_weight_dict = load_pt_safetensors(checkpoint_path, remove_key)
gushiqiao's avatar
gushiqiao committed
383
384
385
        for key in list(cpu_weight_dict.keys()):
            if remove_key and remove_key in key:
                cpu_weight_dict.pop(key)
386
387

    meta_dict = {}
gushiqiao's avatar
gushiqiao committed
388
    if is_weight_loader:
389
390
391
        for key, tensor in cpu_weight_dict.items():
            meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

gushiqiao's avatar
gushiqiao committed
392
    obj_list = [meta_dict] if is_weight_loader else [None]
393

394
395
    src_global_rank = 0
    dist.broadcast_object_list(obj_list, src=src_global_rank)
396
397
    synced_meta_dict = obj_list[0]

gushiqiao's avatar
gushiqiao committed
398
399
400
401
402
403
404
405
    if cpu_offload:
        target_device = "cpu"
        distributed_weight_dict = {key: torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device) for key, meta in synced_meta_dict.items()}
        dist.barrier()
    else:
        target_device = torch.device(f"cuda:{current_rank}")
        distributed_weight_dict = {key: torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device) for key, meta in synced_meta_dict.items()}
        dist.barrier(device_ids=[torch.cuda.current_device()])
406
407

    for key in sorted(synced_meta_dict.keys()):
gushiqiao's avatar
gushiqiao committed
408
409
        tensor_to_broadcast = distributed_weight_dict[key]
        if is_weight_loader:
gushiqiao's avatar
gushiqiao committed
410
            tensor_to_broadcast.copy_(cpu_weight_dict[key], non_blocking=True)
gushiqiao's avatar
gushiqiao committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        if cpu_offload:
            if is_weight_loader:
                gpu_tensor = tensor_to_broadcast.cuda()
                dist.broadcast(gpu_tensor, src=src_global_rank)
                tensor_to_broadcast.copy_(gpu_tensor.cpu(), non_blocking=True)
                del gpu_tensor
                torch.cuda.empty_cache()
            else:
                gpu_tensor = torch.empty_like(tensor_to_broadcast, device="cuda")
                dist.broadcast(gpu_tensor, src=src_global_rank)
                tensor_to_broadcast.copy_(gpu_tensor.cpu(), non_blocking=True)
                del gpu_tensor
                torch.cuda.empty_cache()
        else:
            dist.broadcast(tensor_to_broadcast, src=src_global_rank)
427

gushiqiao's avatar
gushiqiao committed
428
    if is_weight_loader:
429
430
        del cpu_weight_dict

gushiqiao's avatar
gushiqiao committed
431
432
433
    if cpu_offload:
        torch.cuda.empty_cache()

gushiqiao's avatar
gushiqiao committed
434
435
    logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
    return distributed_weight_dict
436
437


sandy's avatar
sandy committed
438
def masks_like(tensor, zero=False, generator=None, p=0.2, prev_len=1):
439
440
441
442
443
444
    assert isinstance(tensor, torch.Tensor)
    out = torch.ones_like(tensor)
    if zero:
        if generator is not None:
            random_num = torch.rand(1, generator=generator, device=generator.device).item()
            if random_num < p:
sandy's avatar
sandy committed
445
                out[:, :prev_len] = torch.zeros_like(out[:, :prev_len])
446
        else:
sandy's avatar
sandy committed
447
            out[:, :prev_len] = torch.zeros_like(out[:, :prev_len])
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    return out


def best_output_size(w, h, dw, dh, expected_area):
    # float output size
    ratio = w / h
    ow = (expected_area * ratio) ** 0.5
    oh = expected_area / ow

    # process width first
    ow1 = int(ow // dw * dw)
    oh1 = int(expected_area / ow1 // dh * dh)
    assert ow1 % dw == 0 and oh1 % dh == 0 and ow1 * oh1 <= expected_area
    ratio1 = ow1 / oh1

    # process height first
    oh2 = int(oh // dh * dh)
    ow2 = int(expected_area / oh2 // dw * dw)
    assert oh2 % dh == 0 and ow2 % dw == 0 and ow2 * oh2 <= expected_area
    ratio2 = ow2 / oh2

    # compare ratios
    if max(ratio / ratio1, ratio1 / ratio) < max(ratio / ratio2, ratio2 / ratio):
        return ow1, oh1
    else:
        return ow2, oh2