gradio_demo.py 46.2 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
import os
import gradio as gr
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
11
12
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
13
import random
gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
19
20
21
22
23

logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
24
25
26
27
28
29
MAX_NUMPY_SEED = 2**32 - 1


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
30

gushiqiao's avatar
gushiqiao committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

gushiqiao's avatar
gushiqiao committed
84
85
86
87
88
89
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
            return total_memory
    except Exception as e:
        logger.warning(f"Failed to get GPU memory: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
109
110


gushiqiao's avatar
gushiqiao committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def cleanup_memory():
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    try:
        if hasattr(psutil, "virtual_memory"):
            if os.name == "posix":
                try:
                    os.system("sync")
                except:  # noqa
                    pass
    except:  # noqa
        pass


gushiqiao's avatar
gushiqiao committed
129
130
131
132
133
134
def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
135
136
137
138
139
140
141
142
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


gushiqiao's avatar
gushiqiao committed
143
144
145
146
147
148
149
150
151
152
153
154
def is_ada_architecture_gpu():
    if not torch.cuda.is_available():
        return False
    try:
        gpu_name = torch.cuda.get_device_name(0).upper()
        ada_keywords = ["RTX 40", "RTX40", "4090", "4080", "4070", "4060"]
        return any(keyword in gpu_name for keyword in ada_keywords)
    except Exception as e:
        logger.warning(f"Failed to get GPU name: {e}")
        return False


gushiqiao's avatar
gushiqiao committed
155
156
global_runner = None
current_config = None
gushiqiao's avatar
gushiqiao committed
157
158
159
160
161
cur_dit_quant_scheme = None
cur_clip_quant_scheme = None
cur_t5_quant_scheme = None
cur_precision_mode = None
cur_enable_teacache = None
gushiqiao's avatar
gushiqiao committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
178
179
180
181
182
183
184
185
186
187
188
189
def run_inference(
    prompt,
    negative_prompt,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
190
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
191
192
193
194
195
196
197
198
199
200
201
202
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
203
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
204
205
    t5_cpu_offload,
    unload_modules,
gushiqiao's avatar
gushiqiao committed
206
207
208
209
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
210
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
211
    clean_cuda_cache,
gushiqiao's avatar
gushiqiao committed
212
    image_path=None,
gushiqiao's avatar
gushiqiao committed
213
):
gushiqiao's avatar
gushiqiao committed
214
215
    cleanup_memory()

gushiqiao's avatar
gushiqiao committed
216
217
218
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
219
    global global_runner, current_config, model_path, task
gushiqiao's avatar
gushiqiao committed
220
    global cur_dit_quant_scheme, cur_clip_quant_scheme, cur_t5_quant_scheme, cur_precision_mode, cur_enable_teacache
gushiqiao's avatar
gushiqiao committed
221
222
223
224
225
226

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

    if task == "t2v":
gushiqiao's avatar
gushiqiao committed
227
        if model_size == "1.3b":
gushiqiao's avatar
gushiqiao committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
308
309
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
310
311
312
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
313
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
314
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
315
316
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
317
318
319
    else:
        clip_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
320
321
    needs_reinit = (
        lazy_load
gushiqiao's avatar
gushiqiao committed
322
        or unload_modules
gushiqiao's avatar
gushiqiao committed
323
324
325
326
327
328
329
330
331
332
333
334
335
        or global_runner is None
        or current_config is None
        or cur_dit_quant_scheme is None
        or cur_dit_quant_scheme != dit_quant_scheme
        or cur_clip_quant_scheme is None
        or cur_clip_quant_scheme != clip_quant_scheme
        or cur_t5_quant_scheme is None
        or cur_t5_quant_scheme != t5_quant_scheme
        or cur_precision_mode is None
        or cur_precision_mode != precision_mode
        or cur_enable_teacache is None
        or cur_enable_teacache != enable_teacache
    )
gushiqiao's avatar
gushiqiao committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
gushiqiao's avatar
gushiqiao committed
350
351
352
353
            if dit_quant_scheme == "int8":
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl-ActVllm"
            else:
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
gushiqiao's avatar
gushiqiao committed
354
355
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
356
357

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
358
359
360
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
361
362
        else:
            quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
363
364
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
365
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
366
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
367
368
369
370
371
372

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
373
374
375
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
376
377
378
379
380
381
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
382
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
383
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
384
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
385
386
387
388
389
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
390
391
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
392
        "teacache_thresh": teacache_thresh,
gushiqiao's avatar
gushiqiao committed
393
394
        "t5_cpu_offload": t5_cpu_offload,
        "unload_modules": unload_modules,
gushiqiao's avatar
gushiqiao committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
416
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
417
        "clean_cuda_cache": clean_cuda_cache,
gushiqiao's avatar
gushiqiao committed
418
        "denoising_step_list": [1000, 750, 500, 250],
gushiqiao's avatar
gushiqiao committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
435
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
436
437
438
439

    logger.info(f"Using model: {model_path}")
    logger.info(f"Inference configuration:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
440
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
441
442
443
444
445
446
447
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
448
449
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
450
451
        runner = init_runner(config)
        current_config = config
gushiqiao's avatar
gushiqiao committed
452
453
454
455
456
        cur_dit_quant_scheme = dit_quant_scheme
        cur_clip_quant_scheme = clip_quant_scheme
        cur_t5_quant_scheme = t5_quant_scheme
        cur_precision_mode = precision_mode
        cur_enable_teacache = enable_teacache
gushiqiao's avatar
gushiqiao committed
457
458
459

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
460
461
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
462

463
    runner.run_pipeline()
gushiqiao's avatar
gushiqiao committed
464

gushiqiao's avatar
gushiqiao committed
465
466
467
468
469
470
471
472
473
    del config, args, model_config, quant_model_config
    if "dit_quantized_ckpt" in locals():
        del dit_quantized_ckpt
    if "t5_quant_ckpt" in locals():
        del t5_quant_ckpt
    if "clip_quant_ckpt" in locals():
        del clip_quant_ckpt

    cleanup_memory()
gushiqiao's avatar
gushiqiao committed
474
475
476
477

    return save_video_path


gushiqiao's avatar
gushiqiao committed
478
479
480
481
482
483
def handle_lazy_load_change(lazy_load_enabled):
    """Handle lazy_load checkbox change to automatically enable unload_modules"""
    return gr.update(value=lazy_load_enabled)


def auto_configure(enable_auto_config, resolution):
gushiqiao's avatar
gushiqiao committed
484
485
486
487
488
489
490
491
492
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
gushiqiao's avatar
gushiqiao committed
493
494
        "t5_cpu_offload_val": False,
        "unload_modules_val": False,
gushiqiao's avatar
gushiqiao committed
495
496
497
498
499
500
501
502
503
504
505
506
507
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
508

gushiqiao's avatar
gushiqiao committed
509
510
511
512
513
514
515
516
517
518
519
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

gushiqiao's avatar
gushiqiao committed
520
    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
521
522
523
524
525

    if is_ada_architecture_gpu():
        quant_op_priority = ["q8f", "vllm", "sgl"]
    else:
        quant_op_priority = ["sgl", "vllm", "q8f"]
gushiqiao's avatar
gushiqiao committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

gushiqiao's avatar
gushiqiao committed
555
    if model_size == "14b":
gushiqiao's avatar
gushiqiao committed
556
557
558
559
560
561
562
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
563
564
565
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
566
567
568
569
            (
                24,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
570
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
571
572
573
574
575
576
577
578
579
580
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
581
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
582
583
584
585
586
587
588
589
590
591
592
593
594
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
595
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
596
597
598
599
600
601
602
603
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
gushiqiao's avatar
gushiqiao committed
604
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
605
606
607
608
609
610
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
611
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
612
613
614
615
616
617
618
619
620
621
622
623
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
624
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
625
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
626
627
628
629
630
631
632
                },
            ),
        ]

    elif is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
633
634
635
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
636
637
638
639
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
640
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
641
642
643
644
645
646
647
648
649
650
651
652
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
653
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
654
655
656
657
658
659
660
661
662
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
663
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
664
665
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
gushiqiao's avatar
gushiqiao committed
666
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
667
668
669
670
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
671
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
672
673
674
675
676
677
678
679
680
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
681
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
682
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
683
684
685
686
                    }
                ),
            ),
        ]
gushiqiao's avatar
gushiqiao committed
687

gushiqiao's avatar
gushiqiao committed
688
    else:
gushiqiao's avatar
gushiqiao committed
689
690
691
692
693
694
695
696
697
698
699
        gpu_rules = [
            (24, {}),
            (
                8,
                {
                    "t5_cpu_offload_val": True,
                    "t5_offload_granularity_val": "block",
                    "t5_quant_scheme_val": quant_type,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
700

gushiqiao's avatar
gushiqiao committed
701
702
703
704
705
706
707
    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
708
709
710
711
712
                {
                    "dit_quant_scheme_val": quant_type,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
713
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
714
                },
gushiqiao's avatar
gushiqiao committed
715
716
            ),
        ]
gushiqiao's avatar
gushiqiao committed
717
    else:
gushiqiao's avatar
gushiqiao committed
718
719
720
721
722
723
724
725
726
727
728
        cpu_rules = [
            (64, {}),
            (
                16,
                {
                    "t5_quant_scheme_val": quant_type,
                    "unload_modules_val": True,
                    "use_tiny_vae_val": True,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
744
    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
745
        return gr.update(visible=(task == "Image to Video"))
gushiqiao's avatar
gushiqiao committed
746
747

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
748
        title="Lightx2v (Lightweight Video Inference and Generation Engine)",
gushiqiao's avatar
gushiqiao committed
749
750
751
752
753
754
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
gushiqiao's avatar
gushiqiao committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        .auto-config-title {
            background: linear-gradient(45deg, #ff6b6b, #4ecdc4);
            background-clip: text;
            -webkit-background-clip: text;
            color: transparent;
            text-align: center;
            margin: 0 !important;
            padding: 8px;
            border: 2px solid #4ecdc4;
            border-radius: 8px;
            background-color: #f0f8ff;
        }
        .auto-config-checkbox {
            border: 2px solid #ff6b6b !important;
            border-radius: 8px !important;
            padding: 10px !important;
            background: linear-gradient(135deg, #fff5f5, #f0fff0) !important;
            box-shadow: 0 2px 8px rgba(255, 107, 107, 0.2) !important;
        }
        .auto-config-checkbox label {
            font-size: 16px !important;
            font-weight: bold !important;
            color: #2c3e50 !important;
        }
gushiqiao's avatar
gushiqiao committed
779
780
781
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} Video Generator")
gushiqiao's avatar
gushiqiao committed
782
        gr.Markdown(f"### Using Model: {model_path}")
gushiqiao's avatar
gushiqiao committed
783
784
785
786
787
788
789
790

        with gr.Tabs() as tabs:
            with gr.Tab("Basic Settings", id=1):
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 Input Parameters")

gushiqiao's avatar
gushiqiao committed
791
792
793
794
795
796
797
798
799
                            if task == "i2v":
                                with gr.Row():
                                    image_path = gr.Image(
                                        label="Input Image",
                                        type="filepath",
                                        height=300,
                                        interactive=True,
                                        visible=True,
                                    )
gushiqiao's avatar
gushiqiao committed
800
801
802
803
804
805
806
807
808
809
810
811
812

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="Prompt",
                                        lines=3,
                                        placeholder="Describe the video content...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="Negative Prompt",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
813
                                        placeholder="What you don't want to appear in the video...",
gushiqiao's avatar
gushiqiao committed
814
                                        max_lines=5,
gushiqiao's avatar
gushiqiao committed
815
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
gushiqiao's avatar
gushiqiao committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
gushiqiao's avatar
gushiqiao committed
838
839
                                        value="832x480",
                                        label="Maximum Resolution",
gushiqiao's avatar
gushiqiao committed
840
                                    )
gushiqiao's avatar
gushiqiao committed
841
842

                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
843
844
845
846
847
848
849
850
                                    with gr.Group():
                                        gr.Markdown("### 🚀 **Smart Configuration Recommendation**", elem_classes=["auto-config-title"])
                                        enable_auto_config = gr.Checkbox(
                                            label="🎯 **Auto-configure Inference Options**",
                                            value=False,
                                            info="💡 **Automatically optimize GPU settings to match the current resolution. After changing the resolution, please re-check this option to prevent potential performance degradation or runtime errors.**",
                                            elem_classes=["auto-config-checkbox"],
                                        )
gushiqiao's avatar
gushiqiao committed
851
                                with gr.Column(scale=9):
gushiqiao's avatar
gushiqiao committed
852
853
                                    seed = gr.Slider(
                                        label="Random Seed",
gushiqiao's avatar
gushiqiao committed
854
855
                                        minimum=0,
                                        maximum=MAX_NUMPY_SEED,
gushiqiao's avatar
gushiqiao committed
856
                                        step=1,
gushiqiao's avatar
gushiqiao committed
857
                                        value=generate_random_seed(),
gushiqiao's avatar
gushiqiao committed
858
                                    )
gushiqiao's avatar
gushiqiao committed
859
860
861
862
863
864
                                with gr.Column(scale=1):
                                    randomize_btn = gr.Button("🎲 Randomize", variant="secondary")

                                randomize_btn.click(fn=generate_random_seed, inputs=None, outputs=seed)

                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
865
866
                                    # Set default inference steps based on model class
                                    default_infer_steps = 4 if model_cls == "wan2.1_distill" else 40
gushiqiao's avatar
gushiqiao committed
867
868
869
870
871
                                    infer_steps = gr.Slider(
                                        label="Inference Steps",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
872
                                        value=default_infer_steps,
gushiqiao's avatar
gushiqiao committed
873
                                        info="Number of inference steps for video generation. Increasing steps may improve quality but reduce speed.",
gushiqiao's avatar
gushiqiao committed
874
875
                                    )

gushiqiao's avatar
gushiqiao committed
876
877
                            # Set default CFG based on model class
                            default_enable_cfg = False if model_cls == "wan2.1_distill" else True
gushiqiao's avatar
gushiqiao committed
878
879
                            enable_cfg = gr.Checkbox(
                                label="Enable Classifier-Free Guidance",
gushiqiao's avatar
gushiqiao committed
880
                                value=default_enable_cfg,
gushiqiao's avatar
gushiqiao committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
                                info="Enable classifier-free guidance to control prompt strength",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG Scale Factor",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
                                info="Controls the influence strength of the prompt. Higher values give more influence to the prompt.",
                            )
                            sample_shift = gr.Slider(
                                label="Distribution Shift",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
                                info="Controls the degree of distribution shift for samples. Larger values indicate more significant shifts.",
gushiqiao's avatar
gushiqiao committed
898
899
                            )

gushiqiao's avatar
gushiqiao committed
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
                            fps = gr.Slider(
                                label="Frames Per Second (FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
                                info="Frames per second of the video. Higher FPS results in smoother videos.",
                            )
                            num_frames = gr.Slider(
                                label="Total Frames",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
                                info="Total number of frames in the video. More frames result in longer videos.",
                            )
gushiqiao's avatar
gushiqiao committed
916

gushiqiao's avatar
gushiqiao committed
917
918
919
920
921
                        save_video_path = gr.Textbox(
                            label="Output Video Path",
                            value=generate_unique_filename(),
                            info="Must include .mp4 extension. If left blank or using the default value, a unique filename will be automatically generated.",
                        )
gushiqiao's avatar
gushiqiao committed
922
923
924
925
926
927
928
929
930
931
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 Generated Video")
                        output_video = gr.Video(
                            label="Result",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
932
                        infer_btn = gr.Button("Generate Video", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
933

gushiqiao's avatar
gushiqiao committed
934
935
            with gr.Tab("⚙️ Advanced Options", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
936
                    gr.Markdown("### GPU Memory Optimization")
gushiqiao's avatar
gushiqiao committed
937
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
938
939
                        rotary_chunk = gr.Checkbox(
                            label="Chunked Rotary Position Embedding",
gushiqiao's avatar
gushiqiao committed
940
                            value=False,
gushiqiao's avatar
gushiqiao committed
941
                            info="When enabled, processes rotary position embeddings in chunks to save GPU memory.",
gushiqiao's avatar
gushiqiao committed
942
943
                        )

gushiqiao's avatar
gushiqiao committed
944
945
946
947
948
949
950
                        rotary_chunk_size = gr.Slider(
                            label="Rotary Embedding Chunk Size",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
                            info="Controls the chunk size for applying rotary embeddings. Larger values may improve performance but increase memory usage. Only effective if 'rotary_chunk' is checked.",
gushiqiao's avatar
gushiqiao committed
951
952
                        )

gushiqiao's avatar
gushiqiao committed
953
954
955
956
957
                        unload_modules = gr.Checkbox(
                            label="Unload Modules",
                            value=False,
                            info="Unload modules (T5, CLIP, DIT, etc.) after inference to reduce GPU/CPU memory usage",
                        )
gushiqiao's avatar
gushiqiao committed
958
959
960
                        clean_cuda_cache = gr.Checkbox(
                            label="Clean CUDA Memory Cache",
                            value=False,
gushiqiao's avatar
gushiqiao committed
961
                            info="When enabled, frees up GPU memory promptly but slows down inference.",
gushiqiao's avatar
gushiqiao committed
962
963
                        )

gushiqiao's avatar
gushiqiao committed
964
                    gr.Markdown("### Asynchronous Offloading")
gushiqiao's avatar
gushiqiao committed
965
966
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
967
968
969
970
971
972
973
                            label="CPU Offloading",
                            value=False,
                            info="Offload parts of the model computation from GPU to CPU to reduce GPU memory usage",
                        )

                        lazy_load = gr.Checkbox(
                            label="Enable Lazy Loading",
gushiqiao's avatar
gushiqiao committed
974
                            value=False,
gushiqiao's avatar
gushiqiao committed
975
                            info="Lazy load model components during inference. Requires CPU loading and DIT quantization.",
gushiqiao's avatar
gushiqiao committed
976
                        )
gushiqiao's avatar
gushiqiao committed
977

gushiqiao's avatar
gushiqiao committed
978
979
980
                        offload_granularity = gr.Dropdown(
                            label="Dit Offload Granularity",
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
981
982
983
984
985
986
987
988
989
990
                            value="phase",
                            info="Sets Dit model offloading granularity: blocks or computational phases",
                        )
                        offload_ratio = gr.Slider(
                            label="Offload ratio for Dit model",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="Controls how much of the Dit model is offloaded to the CPU",
gushiqiao's avatar
gushiqiao committed
991
                        )
gushiqiao's avatar
gushiqiao committed
992
993
994
995
996
997
                        t5_cpu_offload = gr.Checkbox(
                            label="T5 CPU Offloading",
                            value=False,
                            info="Offload the T5 Encoder model to CPU to reduce GPU memory usage",
                        )

gushiqiao's avatar
gushiqiao committed
998
999
1000
                        t5_offload_granularity = gr.Dropdown(
                            label="T5 Encoder Offload Granularity",
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
1001
1002
                            value="model",
                            info="Controls the granularity when offloading the T5 Encoder model to CPU",
gushiqiao's avatar
gushiqiao committed
1003
1004
1005
1006
                        )

                    gr.Markdown("### Low-Precision Quantization")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
1007
1008
1009
1010
1011
1012
                        torch_compile = gr.Checkbox(
                            label="Torch Compile",
                            value=False,
                            info="Use torch.compile to accelerate the inference process",
                        )

gushiqiao's avatar
gushiqiao committed
1013
1014
                        attention_type = gr.Dropdown(
                            label="Attention Operator",
gushiqiao's avatar
gushiqiao committed
1015
1016
1017
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="Use appropriate attention operators to accelerate inference",
gushiqiao's avatar
gushiqiao committed
1018
1019
                        )
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
1020
1021
1022
1023
1024
                            label="Quantization Matmul Operator",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="Select the quantization matrix multiplication operator to accelerate inference",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
1025
1026
1027
1028
1029
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
1030
                            info="Quantization precision for the Dit model",
gushiqiao's avatar
gushiqiao committed
1031
1032
1033
1034
1035
                        )
                        t5_quant_scheme = gr.Dropdown(
                            label="T5 Encoder",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
1036
                            info="Quantization precision for the T5 Encoder model",
gushiqiao's avatar
gushiqiao committed
1037
1038
1039
1040
1041
                        )
                        clip_quant_scheme = gr.Dropdown(
                            label="Clip Encoder",
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
1042
                            info="Quantization precision for the Clip Encoder",
gushiqiao's avatar
gushiqiao committed
1043
1044
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
1045
                            label="Precision Mode for Sensitive Layers",
gushiqiao's avatar
gushiqiao committed
1046
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
1047
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
1048
                            info="Select the numerical precision for critical model components like normalization and embedding layers. FP32 offers higher accuracy, while BF16 improves performance on compatible hardware.",
gushiqiao's avatar
gushiqiao committed
1049
1050
1051
1052
1053
                        )

                    gr.Markdown("### Variational Autoencoder (VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1054
                            label="Use Tiny VAE",
gushiqiao's avatar
gushiqiao committed
1055
1056
1057
1058
                            value=False,
                            info="Use a lightweight VAE model to accelerate the decoding process",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1059
                            label="VAE Tiling Inference",
gushiqiao's avatar
gushiqiao committed
1060
                            value=False,
gushiqiao's avatar
gushiqiao committed
1061
                            info="Use VAE tiling inference to reduce GPU memory usage",
gushiqiao's avatar
gushiqiao committed
1062
1063
1064
1065
1066
                        )

                    gr.Markdown("### Feature Caching")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1067
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
1068
1069
1070
1071
1072
1073
1074
1075
                            value=False,
                            info="Cache features during inference to reduce the number of inference steps",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache Threshold",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
1076
1077
1078
1079
1080
1081
                            info="Higher acceleration may result in lower quality —— Setting to 0.1 provides ~2.0x acceleration, setting to 0.2 provides ~3.0x acceleration",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="Cache Only Key Steps",
                            value=False,
                            info="When checked, cache is written only at key steps where the scheduler returns results; when unchecked, cache is written at all steps to ensure the highest quality",
gushiqiao's avatar
gushiqiao committed
1082
1083
                        )

gushiqiao's avatar
gushiqiao committed
1084
1085
                enable_auto_config.change(
                    fn=auto_configure,
gushiqiao's avatar
gushiqiao committed
1086
                    inputs=[enable_auto_config, resolution],
gushiqiao's avatar
gushiqiao committed
1087
1088
1089
1090
1091
1092
1093
1094
1095
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
gushiqiao's avatar
gushiqiao committed
1096
1097
                        t5_cpu_offload,
                        unload_modules,
gushiqiao's avatar
gushiqiao committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )
gushiqiao's avatar
gushiqiao committed
1112
1113
1114
1115
1116
1117

                lazy_load.change(
                    fn=handle_lazy_load_change,
                    inputs=[lazy_load],
                    outputs=[unload_modules],
                )
gushiqiao's avatar
gushiqiao committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
        if task == "i2v":
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1147
1148
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                    image_path,
                ],
                outputs=output_video,
            )
        else:
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1188
1189
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                ],
                outputs=output_video,
            )
gushiqiao's avatar
gushiqiao committed
1199

gushiqiao's avatar
gushiqiao committed
1200
    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name, inbrowser=True)
gushiqiao's avatar
gushiqiao committed
1201
1202
1203


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1204
1205
1206
1207
1208
    parser = argparse.ArgumentParser(description="Light Video Generation")
    parser.add_argument("--model_path", type=str, required=True, help="Model folder path")
    parser.add_argument(
        "--model_cls",
        type=str,
gushiqiao's avatar
gushiqiao committed
1209
        choices=["wan2.1", "wan2.1_distill"],
gushiqiao's avatar
gushiqiao committed
1210
        default="wan2.1",
gushiqiao's avatar
gushiqiao committed
1211
        help="Model class to use (wan2.1: standard model, wan2.1_distill: distilled model for faster inference)",
gushiqiao's avatar
gushiqiao committed
1212
    )
gushiqiao's avatar
gushiqiao committed
1213
    parser.add_argument("--model_size", type=str, required=True, choices=["14b", "1.3b"], help="Model type to use")
gushiqiao's avatar
gushiqiao committed
1214
    parser.add_argument("--task", type=str, required=True, choices=["i2v", "t2v"], help="Specify the task type. 'i2v' for image-to-video translation, 't2v' for text-to-video generation.")
gushiqiao's avatar
gushiqiao committed
1215
1216
1217
1218
    parser.add_argument("--server_port", type=int, default=7862, help="Server port")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="Server ip")
    args = parser.parse_args()

gushiqiao's avatar
gushiqiao committed
1219
    global model_path, model_cls, model_size
gushiqiao's avatar
gushiqiao committed
1220
1221
    model_path = args.model_path
    model_cls = args.model_cls
gushiqiao's avatar
gushiqiao committed
1222
    model_size = args.model_size
gushiqiao's avatar
gushiqiao committed
1223
    task = args.task
gushiqiao's avatar
gushiqiao committed
1224

gushiqiao's avatar
gushiqiao committed
1225
    main()