gradio_demo.py 44 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
import os
import gradio as gr
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
11
12
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
13
import random
gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
19
20
21
22
23

logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
24
25
26
27
28
29
MAX_NUMPY_SEED = 2**32 - 1


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
30

gushiqiao's avatar
gushiqiao committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

gushiqiao's avatar
gushiqiao committed
84
85
86
87
88
89
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
            return total_memory
    except Exception as e:
        logger.warning(f"Failed to get GPU memory: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
109
110


gushiqiao's avatar
gushiqiao committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def cleanup_memory():
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    try:
        if hasattr(psutil, "virtual_memory"):
            if os.name == "posix":
                try:
                    os.system("sync")
                except:  # noqa
                    pass
    except:  # noqa
        pass


gushiqiao's avatar
gushiqiao committed
129
130
131
132
133
134
def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
135
136
137
138
139
140
141
142
143
144
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


global_runner = None
current_config = None
gushiqiao's avatar
gushiqiao committed
145
146
147
148
149
cur_dit_quant_scheme = None
cur_clip_quant_scheme = None
cur_t5_quant_scheme = None
cur_precision_mode = None
cur_enable_teacache = None
gushiqiao's avatar
gushiqiao committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
166
167
168
169
170
171
172
173
174
175
176
177
def run_inference(
    prompt,
    negative_prompt,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
178
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
179
180
181
182
183
184
185
186
187
188
189
190
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
191
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
192
193
    t5_cpu_offload,
    unload_modules,
gushiqiao's avatar
gushiqiao committed
194
195
196
197
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
198
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
199
    clean_cuda_cache,
gushiqiao's avatar
gushiqiao committed
200
    image_path=None,
gushiqiao's avatar
gushiqiao committed
201
):
gushiqiao's avatar
gushiqiao committed
202
203
    cleanup_memory()

gushiqiao's avatar
gushiqiao committed
204
205
206
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
207
    global global_runner, current_config, model_path, task
gushiqiao's avatar
gushiqiao committed
208
    global cur_dit_quant_scheme, cur_clip_quant_scheme, cur_t5_quant_scheme, cur_precision_mode, cur_enable_teacache
gushiqiao's avatar
gushiqiao committed
209
210
211
212
213
214

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

    if task == "t2v":
gushiqiao's avatar
gushiqiao committed
215
        if model_size == "1.3b":
gushiqiao's avatar
gushiqiao committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
296
297
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
298
299
300
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
301
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
302
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
303
304
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
305
306
307
    else:
        clip_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
308
309
    needs_reinit = (
        lazy_load
gushiqiao's avatar
gushiqiao committed
310
        or unload_modules
gushiqiao's avatar
gushiqiao committed
311
312
313
314
315
316
317
318
319
320
321
322
323
        or global_runner is None
        or current_config is None
        or cur_dit_quant_scheme is None
        or cur_dit_quant_scheme != dit_quant_scheme
        or cur_clip_quant_scheme is None
        or cur_clip_quant_scheme != clip_quant_scheme
        or cur_t5_quant_scheme is None
        or cur_t5_quant_scheme != t5_quant_scheme
        or cur_precision_mode is None
        or cur_precision_mode != precision_mode
        or cur_enable_teacache is None
        or cur_enable_teacache != enable_teacache
    )
gushiqiao's avatar
gushiqiao committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
gushiqiao's avatar
gushiqiao committed
338
339
340
341
            if dit_quant_scheme == "int8":
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl-ActVllm"
            else:
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
gushiqiao's avatar
gushiqiao committed
342
343
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
344
345

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
346
347
348
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
349
350
        else:
            quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
351
352
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
353
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
354
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
355
356
357
358
359
360

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
361
362
363
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
364
365
366
367
368
369
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
370
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
371
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
372
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
373
374
375
376
377
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
378
379
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
380
        "teacache_thresh": teacache_thresh,
gushiqiao's avatar
gushiqiao committed
381
382
        "t5_cpu_offload": t5_cpu_offload,
        "unload_modules": unload_modules,
gushiqiao's avatar
gushiqiao committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
404
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        "clean_cuda_cache": clean_cuda_cache,
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
422
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
423
424
425
426

    logger.info(f"Using model: {model_path}")
    logger.info(f"Inference configuration:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
427
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
428
429
430
431
432
433
434
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
435
436
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
437
438
        runner = init_runner(config)
        current_config = config
gushiqiao's avatar
gushiqiao committed
439
440
441
442
443
        cur_dit_quant_scheme = dit_quant_scheme
        cur_clip_quant_scheme = clip_quant_scheme
        cur_t5_quant_scheme = t5_quant_scheme
        cur_precision_mode = precision_mode
        cur_enable_teacache = enable_teacache
gushiqiao's avatar
gushiqiao committed
444
445
446

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
447
448
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
449

450
    runner.run_pipeline()
gushiqiao's avatar
gushiqiao committed
451

gushiqiao's avatar
gushiqiao committed
452
453
454
455
456
457
458
459
460
    del config, args, model_config, quant_model_config
    if "dit_quantized_ckpt" in locals():
        del dit_quantized_ckpt
    if "t5_quant_ckpt" in locals():
        del t5_quant_ckpt
    if "clip_quant_ckpt" in locals():
        del clip_quant_ckpt

    cleanup_memory()
gushiqiao's avatar
gushiqiao committed
461
462
463
464

    return save_video_path


gushiqiao's avatar
gushiqiao committed
465
466
467
468
469
470
def handle_lazy_load_change(lazy_load_enabled):
    """Handle lazy_load checkbox change to automatically enable unload_modules"""
    return gr.update(value=lazy_load_enabled)


def auto_configure(enable_auto_config, resolution):
gushiqiao's avatar
gushiqiao committed
471
472
473
474
475
476
477
478
479
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
gushiqiao's avatar
gushiqiao committed
480
481
        "t5_cpu_offload_val": False,
        "unload_modules_val": False,
gushiqiao's avatar
gushiqiao committed
482
483
484
485
486
487
488
489
490
491
492
493
494
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
495

gushiqiao's avatar
gushiqiao committed
496
497
498
499
500
501
502
503
504
505
506
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

gushiqiao's avatar
gushiqiao committed
507
    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    quant_op_priority = ["sgl", "vllm", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

gushiqiao's avatar
gushiqiao committed
538
    if model_size == "14b":
gushiqiao's avatar
gushiqiao committed
539
540
541
542
543
544
545
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
546
547
548
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
549
550
551
552
            (
                24,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
553
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
554
555
556
557
558
559
560
561
562
563
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
564
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
565
566
567
568
569
570
571
572
573
574
575
576
577
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
578
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
579
580
581
582
583
584
585
586
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
gushiqiao's avatar
gushiqiao committed
587
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
588
589
590
591
592
593
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
594
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
595
596
597
598
599
600
601
602
603
604
605
606
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
607
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
608
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
609
610
611
612
613
614
615
                },
            ),
        ]

    elif is_14b:
        gpu_rules = [
            (80, {}),
gushiqiao's avatar
gushiqiao committed
616
617
618
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2, "t5_cpu_offload_val": True}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5, "t5_cpu_offload_val": True}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8, "t5_cpu_offload_val": True}),
gushiqiao's avatar
gushiqiao committed
619
620
621
622
            (
                16,
                {
                    "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
623
                    "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
624
625
626
627
628
629
630
631
632
633
634
635
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
636
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
637
638
639
640
641
642
643
644
645
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
646
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
647
648
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
gushiqiao's avatar
gushiqiao committed
649
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
650
651
652
653
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
654
                        "t5_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
655
656
657
658
659
660
661
662
663
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
664
                        "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
665
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
666
667
668
669
                    }
                ),
            ),
        ]
gushiqiao's avatar
gushiqiao committed
670

gushiqiao's avatar
gushiqiao committed
671
    else:
gushiqiao's avatar
gushiqiao committed
672
673
674
675
676
677
678
679
680
681
682
        gpu_rules = [
            (24, {}),
            (
                8,
                {
                    "t5_cpu_offload_val": True,
                    "t5_offload_granularity_val": "block",
                    "t5_quant_scheme_val": quant_type,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
683

gushiqiao's avatar
gushiqiao committed
684
685
686
687
688
689
690
    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
691
692
693
694
695
                {
                    "dit_quant_scheme_val": quant_type,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
696
                    "unload_modules_val": True,
gushiqiao's avatar
gushiqiao committed
697
                },
gushiqiao's avatar
gushiqiao committed
698
699
            ),
        ]
gushiqiao's avatar
gushiqiao committed
700
    else:
gushiqiao's avatar
gushiqiao committed
701
702
703
704
705
706
707
708
709
710
711
        cpu_rules = [
            (64, {}),
            (
                16,
                {
                    "t5_quant_scheme_val": quant_type,
                    "unload_modules_val": True,
                    "use_tiny_vae_val": True,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
727
    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
728
        return gr.update(visible=(task == "Image to Video"))
gushiqiao's avatar
gushiqiao committed
729
730

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
731
        title="Lightx2v (Lightweight Video Inference and Generation Engine)",
gushiqiao's avatar
gushiqiao committed
732
733
734
735
736
737
738
739
740
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} Video Generator")
gushiqiao's avatar
gushiqiao committed
741
        gr.Markdown(f"### Using Model: {model_path}")
gushiqiao's avatar
gushiqiao committed
742
743
744
745
746
747
748
749

        with gr.Tabs() as tabs:
            with gr.Tab("Basic Settings", id=1):
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 Input Parameters")

gushiqiao's avatar
gushiqiao committed
750
751
752
753
754
755
756
757
758
                            if task == "i2v":
                                with gr.Row():
                                    image_path = gr.Image(
                                        label="Input Image",
                                        type="filepath",
                                        height=300,
                                        interactive=True,
                                        visible=True,
                                    )
gushiqiao's avatar
gushiqiao committed
759
760
761
762
763
764
765
766
767
768
769
770
771

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="Prompt",
                                        lines=3,
                                        placeholder="Describe the video content...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="Negative Prompt",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
772
                                        placeholder="What you don't want to appear in the video...",
gushiqiao's avatar
gushiqiao committed
773
                                        max_lines=5,
gushiqiao's avatar
gushiqiao committed
774
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
gushiqiao's avatar
gushiqiao committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
gushiqiao's avatar
gushiqiao committed
797
798
                                        value="832x480",
                                        label="Maximum Resolution",
gushiqiao's avatar
gushiqiao committed
799
                                    )
gushiqiao's avatar
gushiqiao committed
800
801
802
803
804
805
806

                                with gr.Column():
                                    enable_auto_config = gr.Checkbox(
                                        label="Auto-configure Inference Options",
                                        value=False,
                                        info="Automatically optimize GPU settings to match the current resolution. After changing the resolution, please re-check this option to prevent potential performance degradation or runtime errors.",
                                    )
gushiqiao's avatar
gushiqiao committed
807
                                with gr.Column(scale=9):
gushiqiao's avatar
gushiqiao committed
808
809
                                    seed = gr.Slider(
                                        label="Random Seed",
gushiqiao's avatar
gushiqiao committed
810
811
                                        minimum=0,
                                        maximum=MAX_NUMPY_SEED,
gushiqiao's avatar
gushiqiao committed
812
                                        step=1,
gushiqiao's avatar
gushiqiao committed
813
                                        value=generate_random_seed(),
gushiqiao's avatar
gushiqiao committed
814
                                    )
gushiqiao's avatar
gushiqiao committed
815
816
817
818
819
820
                                with gr.Column(scale=1):
                                    randomize_btn = gr.Button("🎲 Randomize", variant="secondary")

                                randomize_btn.click(fn=generate_random_seed, inputs=None, outputs=seed)

                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
821
822
823
824
825
                                    infer_steps = gr.Slider(
                                        label="Inference Steps",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
826
827
                                        value=40,
                                        info="Number of inference steps for video generation. Increasing steps may improve quality but reduce speed.",
gushiqiao's avatar
gushiqiao committed
828
829
                                    )

gushiqiao's avatar
gushiqiao committed
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
                            enable_cfg = gr.Checkbox(
                                label="Enable Classifier-Free Guidance",
                                value=True,
                                info="Enable classifier-free guidance to control prompt strength",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG Scale Factor",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
                                info="Controls the influence strength of the prompt. Higher values give more influence to the prompt.",
                            )
                            sample_shift = gr.Slider(
                                label="Distribution Shift",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
                                info="Controls the degree of distribution shift for samples. Larger values indicate more significant shifts.",
gushiqiao's avatar
gushiqiao committed
850
851
                            )

gushiqiao's avatar
gushiqiao committed
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
                            fps = gr.Slider(
                                label="Frames Per Second (FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
                                info="Frames per second of the video. Higher FPS results in smoother videos.",
                            )
                            num_frames = gr.Slider(
                                label="Total Frames",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
                                info="Total number of frames in the video. More frames result in longer videos.",
                            )
gushiqiao's avatar
gushiqiao committed
868

gushiqiao's avatar
gushiqiao committed
869
870
871
872
873
                        save_video_path = gr.Textbox(
                            label="Output Video Path",
                            value=generate_unique_filename(),
                            info="Must include .mp4 extension. If left blank or using the default value, a unique filename will be automatically generated.",
                        )
gushiqiao's avatar
gushiqiao committed
874
875
876
877
878
879
880
881
882
883
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 Generated Video")
                        output_video = gr.Video(
                            label="Result",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
884
                        infer_btn = gr.Button("Generate Video", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
885

gushiqiao's avatar
gushiqiao committed
886
887
            with gr.Tab("⚙️ Advanced Options", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
888
                    gr.Markdown("### GPU Memory Optimization")
gushiqiao's avatar
gushiqiao committed
889
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
890
891
                        rotary_chunk = gr.Checkbox(
                            label="Chunked Rotary Position Embedding",
gushiqiao's avatar
gushiqiao committed
892
                            value=False,
gushiqiao's avatar
gushiqiao committed
893
                            info="When enabled, processes rotary position embeddings in chunks to save GPU memory.",
gushiqiao's avatar
gushiqiao committed
894
895
                        )

gushiqiao's avatar
gushiqiao committed
896
897
898
899
900
901
902
                        rotary_chunk_size = gr.Slider(
                            label="Rotary Embedding Chunk Size",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
                            info="Controls the chunk size for applying rotary embeddings. Larger values may improve performance but increase memory usage. Only effective if 'rotary_chunk' is checked.",
gushiqiao's avatar
gushiqiao committed
903
904
                        )

gushiqiao's avatar
gushiqiao committed
905
906
907
908
909
                        unload_modules = gr.Checkbox(
                            label="Unload Modules",
                            value=False,
                            info="Unload modules (T5, CLIP, DIT, etc.) after inference to reduce GPU/CPU memory usage",
                        )
gushiqiao's avatar
gushiqiao committed
910
911
912
                        clean_cuda_cache = gr.Checkbox(
                            label="Clean CUDA Memory Cache",
                            value=False,
gushiqiao's avatar
gushiqiao committed
913
                            info="When enabled, frees up GPU memory promptly but slows down inference.",
gushiqiao's avatar
gushiqiao committed
914
915
                        )

gushiqiao's avatar
gushiqiao committed
916
                    gr.Markdown("### Asynchronous Offloading")
gushiqiao's avatar
gushiqiao committed
917
918
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
919
920
921
922
923
924
925
                            label="CPU Offloading",
                            value=False,
                            info="Offload parts of the model computation from GPU to CPU to reduce GPU memory usage",
                        )

                        lazy_load = gr.Checkbox(
                            label="Enable Lazy Loading",
gushiqiao's avatar
gushiqiao committed
926
                            value=False,
gushiqiao's avatar
gushiqiao committed
927
                            info="Lazy load model components during inference. Requires CPU loading and DIT quantization.",
gushiqiao's avatar
gushiqiao committed
928
                        )
gushiqiao's avatar
gushiqiao committed
929

gushiqiao's avatar
gushiqiao committed
930
931
932
                        offload_granularity = gr.Dropdown(
                            label="Dit Offload Granularity",
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
933
934
935
936
937
938
939
940
941
942
                            value="phase",
                            info="Sets Dit model offloading granularity: blocks or computational phases",
                        )
                        offload_ratio = gr.Slider(
                            label="Offload ratio for Dit model",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="Controls how much of the Dit model is offloaded to the CPU",
gushiqiao's avatar
gushiqiao committed
943
                        )
gushiqiao's avatar
gushiqiao committed
944
945
946
947
948
949
                        t5_cpu_offload = gr.Checkbox(
                            label="T5 CPU Offloading",
                            value=False,
                            info="Offload the T5 Encoder model to CPU to reduce GPU memory usage",
                        )

gushiqiao's avatar
gushiqiao committed
950
951
952
                        t5_offload_granularity = gr.Dropdown(
                            label="T5 Encoder Offload Granularity",
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
953
954
                            value="model",
                            info="Controls the granularity when offloading the T5 Encoder model to CPU",
gushiqiao's avatar
gushiqiao committed
955
956
957
958
                        )

                    gr.Markdown("### Low-Precision Quantization")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
959
960
961
962
963
964
                        torch_compile = gr.Checkbox(
                            label="Torch Compile",
                            value=False,
                            info="Use torch.compile to accelerate the inference process",
                        )

gushiqiao's avatar
gushiqiao committed
965
966
                        attention_type = gr.Dropdown(
                            label="Attention Operator",
gushiqiao's avatar
gushiqiao committed
967
968
969
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="Use appropriate attention operators to accelerate inference",
gushiqiao's avatar
gushiqiao committed
970
971
                        )
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
972
973
974
975
976
                            label="Quantization Matmul Operator",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="Select the quantization matrix multiplication operator to accelerate inference",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
977
978
979
980
981
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
982
                            info="Quantization precision for the Dit model",
gushiqiao's avatar
gushiqiao committed
983
984
985
986
987
                        )
                        t5_quant_scheme = gr.Dropdown(
                            label="T5 Encoder",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
988
                            info="Quantization precision for the T5 Encoder model",
gushiqiao's avatar
gushiqiao committed
989
990
991
992
993
                        )
                        clip_quant_scheme = gr.Dropdown(
                            label="Clip Encoder",
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
994
                            info="Quantization precision for the Clip Encoder",
gushiqiao's avatar
gushiqiao committed
995
996
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
997
                            label="Precision Mode for Sensitive Layers",
gushiqiao's avatar
gushiqiao committed
998
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
999
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
1000
                            info="Select the numerical precision for critical model components like normalization and embedding layers. FP32 offers higher accuracy, while BF16 improves performance on compatible hardware.",
gushiqiao's avatar
gushiqiao committed
1001
1002
1003
1004
1005
                        )

                    gr.Markdown("### Variational Autoencoder (VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1006
                            label="Use Tiny VAE",
gushiqiao's avatar
gushiqiao committed
1007
1008
1009
1010
                            value=False,
                            info="Use a lightweight VAE model to accelerate the decoding process",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1011
                            label="VAE Tiling Inference",
gushiqiao's avatar
gushiqiao committed
1012
                            value=False,
gushiqiao's avatar
gushiqiao committed
1013
                            info="Use VAE tiling inference to reduce GPU memory usage",
gushiqiao's avatar
gushiqiao committed
1014
1015
1016
1017
1018
                        )

                    gr.Markdown("### Feature Caching")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
1019
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
1020
1021
1022
1023
1024
1025
1026
1027
                            value=False,
                            info="Cache features during inference to reduce the number of inference steps",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache Threshold",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
1028
1029
1030
1031
1032
1033
                            info="Higher acceleration may result in lower quality —— Setting to 0.1 provides ~2.0x acceleration, setting to 0.2 provides ~3.0x acceleration",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="Cache Only Key Steps",
                            value=False,
                            info="When checked, cache is written only at key steps where the scheduler returns results; when unchecked, cache is written at all steps to ensure the highest quality",
gushiqiao's avatar
gushiqiao committed
1034
1035
                        )

gushiqiao's avatar
gushiqiao committed
1036
1037
                enable_auto_config.change(
                    fn=auto_configure,
gushiqiao's avatar
gushiqiao committed
1038
                    inputs=[enable_auto_config, resolution],
gushiqiao's avatar
gushiqiao committed
1039
1040
1041
1042
1043
1044
1045
1046
1047
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
gushiqiao's avatar
gushiqiao committed
1048
1049
                        t5_cpu_offload,
                        unload_modules,
gushiqiao's avatar
gushiqiao committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )
gushiqiao's avatar
gushiqiao committed
1064
1065
1066
1067
1068
1069

                lazy_load.change(
                    fn=handle_lazy_load_change,
                    inputs=[lazy_load],
                    outputs=[unload_modules],
                )
gushiqiao's avatar
gushiqiao committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        if task == "i2v":
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1099
1100
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                    image_path,
                ],
                outputs=output_video,
            )
        else:
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
gushiqiao's avatar
gushiqiao committed
1140
1141
                    t5_cpu_offload,
                    unload_modules,
gushiqiao's avatar
gushiqiao committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                ],
                outputs=output_video,
            )
gushiqiao's avatar
gushiqiao committed
1151
1152
1153
1154
1155

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name)


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
    parser = argparse.ArgumentParser(description="Light Video Generation")
    parser.add_argument("--model_path", type=str, required=True, help="Model folder path")
    parser.add_argument(
        "--model_cls",
        type=str,
        choices=["wan2.1"],
        default="wan2.1",
        help="Model class to use",
    )
gushiqiao's avatar
gushiqiao committed
1165
    parser.add_argument("--model_size", type=str, required=True, choices=["14b", "1.3b"], help="Model type to use")
gushiqiao's avatar
gushiqiao committed
1166
    parser.add_argument("--task", type=str, required=True, choices=["i2v", "t2v"], help="Specify the task type. 'i2v' for image-to-video translation, 't2v' for text-to-video generation.")
gushiqiao's avatar
gushiqiao committed
1167
1168
1169
1170
    parser.add_argument("--server_port", type=int, default=7862, help="Server port")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="Server ip")
    args = parser.parse_args()

gushiqiao's avatar
gushiqiao committed
1171
    global model_path, model_cls, model_size
gushiqiao's avatar
gushiqiao committed
1172
1173
    model_path = args.model_path
    model_cls = args.model_cls
gushiqiao's avatar
gushiqiao committed
1174
    model_size = args.model_size
gushiqiao's avatar
gushiqiao committed
1175
    task = args.task
gushiqiao's avatar
gushiqiao committed
1176

gushiqiao's avatar
gushiqiao committed
1177
    main()