q_linear.py 11.1 KB
Newer Older
1
2
3
import torch
import torch.nn as nn

gushiqiao's avatar
gushiqiao committed
4
5
6
7
try:
    from vllm import _custom_ops as ops
except ModuleNotFoundError:
    ops = None
8

helloyongyang's avatar
helloyongyang committed
9
10
11
12
13
try:
    import sgl_kernel
except ImportError:
    sgl_kernel = None

gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
try:
    from torchao.quantization.utils import quant_int8_per_token_matmul, quantize_activation_per_token_absmax
except ModuleNotFoundError:
    quant_int8_per_token_matmul, quantize_activation_per_token_absmax = None, None

gushiqiao's avatar
gushiqiao committed
19
try:
gushiqiao's avatar
gushiqiao committed
20
    from q8_kernels.functional.linear import q8_linear
gushiqiao's avatar
gushiqiao committed
21
except ImportError:
gushiqiao's avatar
gushiqiao committed
22
23
24
25
26
27
    q8_linear = None

try:
    from q8_kernels.functional.linear import fp8_linear
except ImportError:
    fp8_linear = None
gushiqiao's avatar
gushiqiao committed
28

gushiqiao's avatar
gushiqiao committed
29
30

class VllmQuantLinearInt8(nn.Module):
gushiqiao's avatar
gushiqiao committed
31
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
32
33
34
35
36
37
38
39
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
gushiqiao's avatar
gushiqiao committed
40
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
41
42
43
44
45
46
47
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight.t(),
            input_tensor_scale,
            self.weight_scale.float(),
            self.bias,
        )
        return output_tensor.unsqueeze(0)

gushiqiao's avatar
gushiqiao committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self

80

gushiqiao's avatar
gushiqiao committed
81
class VllmQuantLinearFp8(nn.Module):
gushiqiao's avatar
gushiqiao committed
82
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
83
84
85
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
gushiqiao's avatar
FIX  
gushiqiao committed
86
87
        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.float8_e4m3fn))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))
88
        if bias:
gushiqiao's avatar
gushiqiao committed
89
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
106
            input_tensor_quant,
107
            self.weight.t(),
108
109
            input_tensor_scale,
            self.weight_scale.float(),
110
            self.bias,
111
        )
gushiqiao's avatar
gushiqiao committed
112

113
        return output_tensor.unsqueeze(0)
gushiqiao's avatar
gushiqiao committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self
gushiqiao's avatar
gushiqiao committed
128
129


helloyongyang's avatar
helloyongyang committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
class SglQuantLinearFp8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.float8_e4m3fn))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))
        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale)
        return input_tensor_quant, input_tensor_scale

    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = sgl_kernel.fp8_scaled_mm(
            input_tensor_quant,
            self.weight.t(),
            input_tensor_scale,
            self.weight_scale,
            dtype,
            bias=self.bias,
        )

        return output_tensor.unsqueeze(0)

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self


gushiqiao's avatar
gushiqiao committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
class TorchaoQuantLinearInt8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = quantize_activation_per_token_absmax(x)
        return input_tensor_quant, input_tensor_scale

    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = quant_int8_per_token_matmul(input_tensor_quant, input_tensor_scale, self.weight.t(), self.weight_scale.t().float(), output_dtype=torch.bfloat16)
        if self.bias is not None:
            output_tensor = output_tensor + self.bias

        return output_tensor.unsqueeze(0)

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self
gushiqiao's avatar
gushiqiao committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243


class Q8FQuantLinearInt8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.float32):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=torch.float32))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, x):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(x)
gushiqiao's avatar
gushiqiao committed
244
        output_tensor = q8_linear(
gushiqiao's avatar
gushiqiao committed
245
246
247
248
249
250
251
252
253
254
            input_tensor_quant,
            self.weight,
            self.bias if self.bias is not None else None,
            input_tensor_scale,
            self.weight_scale.float(),
            fuse_gelu=False,
            out_dtype=torch.bfloat16,
        )
        return output_tensor

255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self

gushiqiao's avatar
gushiqiao committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

class Q8FQuantLinearFp8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.float32):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.float8_e4m3fn))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=torch.float32))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x.squeeze(0), None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, x):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(x)
gushiqiao's avatar
gushiqiao committed
290
        output_tensor = fp8_linear(
gushiqiao's avatar
gushiqiao committed
291
292
293
294
295
296
297
298
            input_tensor_quant,
            self.weight,
            self.bias if self.bias is not None else None,
            input_tensor_scale,
            self.weight_scale,
            out_dtype=torch.bfloat16,
        )
        return output_tensor
299
300
301
302
303
304
305
306
307
308
309
310
311
312

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self