q_linear.py 11 KB
Newer Older
1
2
3
import torch
import torch.nn as nn

gushiqiao's avatar
gushiqiao committed
4
5
6
7
try:
    from vllm import _custom_ops as ops
except ModuleNotFoundError:
    ops = None
8

helloyongyang's avatar
helloyongyang committed
9
10
11
12
13
try:
    import sgl_kernel
except ImportError:
    sgl_kernel = None

gushiqiao's avatar
gushiqiao committed
14
15
16
17
18
try:
    from torchao.quantization.utils import quant_int8_per_token_matmul, quantize_activation_per_token_absmax
except ModuleNotFoundError:
    quant_int8_per_token_matmul, quantize_activation_per_token_absmax = None, None

gushiqiao's avatar
gushiqiao committed
19
20
21
22
23
try:
    import q8_kernels.functional as Q8F
except ImportError:
    Q8F = None

gushiqiao's avatar
gushiqiao committed
24
25

class VllmQuantLinearInt8(nn.Module):
gushiqiao's avatar
gushiqiao committed
26
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
27
28
29
30
31
32
33
34
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
gushiqiao's avatar
gushiqiao committed
35
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
36
37
38
39
40
41
42
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight.t(),
            input_tensor_scale,
            self.weight_scale.float(),
            self.bias,
        )
        return output_tensor.unsqueeze(0)

gushiqiao's avatar
gushiqiao committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self

75

gushiqiao's avatar
gushiqiao committed
76
class VllmQuantLinearFp8(nn.Module):
gushiqiao's avatar
gushiqiao committed
77
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
78
79
80
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
gushiqiao's avatar
FIX  
gushiqiao committed
81
82
        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.float8_e4m3fn))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))
83
        if bias:
gushiqiao's avatar
gushiqiao committed
84
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
101
            input_tensor_quant,
102
            self.weight.t(),
103
104
            input_tensor_scale,
            self.weight_scale.float(),
105
            self.bias,
106
        )
gushiqiao's avatar
gushiqiao committed
107

108
        return output_tensor.unsqueeze(0)
gushiqiao's avatar
gushiqiao committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self
gushiqiao's avatar
gushiqiao committed
123
124


helloyongyang's avatar
helloyongyang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class SglQuantLinearFp8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.float8_e4m3fn))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))
        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale)
        return input_tensor_quant, input_tensor_scale

    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = sgl_kernel.fp8_scaled_mm(
            input_tensor_quant,
            self.weight.t(),
            input_tensor_scale,
            self.weight_scale,
            dtype,
            bias=self.bias,
        )

        return output_tensor.unsqueeze(0)

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self


gushiqiao's avatar
gushiqiao committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
class TorchaoQuantLinearInt8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.bfloat16):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=dtype))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = quantize_activation_per_token_absmax(x)
        return input_tensor_quant, input_tensor_scale

    def forward(self, input_tensor):
        input_tensor = input_tensor.squeeze(0)
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = quant_int8_per_token_matmul(input_tensor_quant, input_tensor_scale, self.weight.t(), self.weight_scale.t().float(), output_dtype=torch.bfloat16)
        if self.bias is not None:
            output_tensor = output_tensor + self.bias

        return output_tensor.unsqueeze(0)

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self
gushiqiao's avatar
gushiqiao committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249


class Q8FQuantLinearInt8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.float32):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=torch.float32))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, x):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(x)
        output_tensor = Q8F.linear.q8_linear(
            input_tensor_quant,
            self.weight,
            self.bias if self.bias is not None else None,
            input_tensor_scale,
            self.weight_scale.float(),
            fuse_gelu=False,
            out_dtype=torch.bfloat16,
        )
        return output_tensor

250
251
252
253
254
255
256
257
258
259
260
261
262
263
    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self

gushiqiao's avatar
gushiqiao committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

class Q8FQuantLinearFp8(nn.Module):
    def __init__(self, in_features, out_features, bias=True, dtype=torch.float32):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.float8_e4m3fn))
        self.register_buffer("weight_scale", torch.empty((out_features, 1), dtype=torch.float32))

        if bias:
            self.register_buffer("bias", torch.empty(out_features, dtype=torch.float32))
        else:
            self.register_buffer("bias", None)

    def act_quant_func(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x.squeeze(0), None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def forward(self, x):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(x)
        output_tensor = Q8F.linear.fp8_linear(
            input_tensor_quant,
            self.weight,
            self.bias if self.bias is not None else None,
            input_tensor_scale,
            self.weight_scale,
            out_dtype=torch.bfloat16,
        )
        return output_tensor
294
295
296
297
298
299
300
301
302
303
304
305
306
307

    def _apply(self, fn):
        for module in self.children():
            module._apply(fn)

        def maybe_cast(t):
            if t is not None and t.device != fn(t).device:
                return fn(t)
            return t

        self.weight = maybe_cast(self.weight)
        self.weight_scale = maybe_cast(self.weight_scale)
        self.bias = maybe_cast(self.bias)
        return self