mm_weight.py 21.8 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
import torch
from abc import ABCMeta, abstractmethod
from vllm import _custom_ops as ops
4
import sgl_kernel
helloyongyang's avatar
helloyongyang committed
5
6
from lightx2v.utils.registry_factory import MM_WEIGHT_REGISTER
from lightx2v.utils.quant_utils import IntegerQuantizer, FloatQuantizer
7
from lightx2v.utils.envs import *
root's avatar
root committed
8
from loguru import logger
Dongz's avatar
Dongz committed
9

10
11
12
13
try:
    import q8_kernels.functional as Q8F
except ImportError:
    Q8F = None
helloyongyang's avatar
helloyongyang committed
14

15
16
17
18
19
try:
    import deep_gemm
except ImportError:
    deep_gemm = None

helloyongyang's avatar
helloyongyang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

class MMWeightTemplate(metaclass=ABCMeta):
    def __init__(self, weight_name, bias_name):
        self.weight_name = weight_name
        self.bias_name = bias_name
        self.config = {}

    @abstractmethod
    def load(self, weight_dict):
        pass

    @abstractmethod
    def apply(self, input_tensor):
        pass

35
36
    def set_config(self, config={}):
        self.config = config
helloyongyang's avatar
helloyongyang committed
37

gushiqiao's avatar
gushiqiao committed
38
39
    def to_cpu(self, non_blocking=False):
        self.weight = self.weight.to("cpu", non_blocking=non_blocking)
40
41
        if hasattr(self, "weight_scale"):
            self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
gushiqiao's avatar
gushiqiao committed
42
43
44
45
46
        if self.bias is not None:
            self.bias = self.bias.to("cpu", non_blocking=non_blocking)

    def to_cuda(self, non_blocking=False):
        self.weight = self.weight.cuda(non_blocking=non_blocking)
47
48
        if hasattr(self, "weight_scale"):
            self.weight_scale = self.weight_scale.cuda(non_blocking=non_blocking)
gushiqiao's avatar
gushiqiao committed
49
50
51
        if self.bias is not None:
            self.bias = self.bias.cuda(non_blocking=non_blocking)

helloyongyang's avatar
helloyongyang committed
52

Dongz's avatar
Dongz committed
53
@MM_WEIGHT_REGISTER("Default")
helloyongyang's avatar
helloyongyang committed
54
55
56
57
58
class MMWeight(MMWeightTemplate):
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)

    def load(self, weight_dict):
59
        self.weight = weight_dict[self.weight_name].t()
Xinchi Huang's avatar
Xinchi Huang committed
60
        self.pinned_weight = torch.empty(self.weight.shape, pin_memory=True, dtype=self.weight.dtype)
61
        self.bias = weight_dict[self.bias_name] if self.bias_name is not None else None
Xinchi Huang's avatar
Xinchi Huang committed
62
        self.pinned_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype) if self.bias is not None else None
helloyongyang's avatar
helloyongyang committed
63
64
65
66
67
68
69
70
71
72

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)

helloyongyang's avatar
helloyongyang committed
73
74
75
76
77
78
79
80
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
        destination[self.weight_name] = self.weight.cpu().detach().clone().t().contiguous()
        if self.bias is not None:
            destination[self.bias_name] = self.bias.cpu().detach().clone()
        return destination

Xinchi Huang's avatar
Xinchi Huang committed
81
82
83
84
85
86
87
88
89
    def to_cpu(self, non_blocking=False):
        # self.weight = self.weight.to("cpu", non_blocking=non_blocking)
        self.weight = self.pinned_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
        if hasattr(self, "weight_scale"):
            self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
        if self.bias is not None:
            # self.bias = self.bias.to("cpu", non_blocking=non_blocking)
            self.bias = self.pinned_bias.copy_(self.bias, non_blocking=non_blocking).cpu()

helloyongyang's avatar
helloyongyang committed
90

Dongz's avatar
Dongz committed
91
@MM_WEIGHT_REGISTER("Default-Force-FP32")
92
class MMWeightForceFP32(MMWeight):
helloyongyang's avatar
helloyongyang committed
93
94
95
96
97
98
99
100
101
102
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)

    def load(self, weight_dict):
        super().load(weight_dict)
        self.weight = self.weight.to(torch.float32)
        if self.bias is not None:
            self.bias = self.bias.to(torch.float32)


103
104
105
106
107
108
109
class MMWeightQuantTemplate(MMWeightTemplate):
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = None
        self.weight_need_transpose = True
        self.act_quant_func = None

helloyongyang's avatar
helloyongyang committed
110
111
112
    # =========================
    # weight load functions
    # =========================
113
114
115

    def load(self, weight_dict):
        self.load_func(weight_dict)
helloyongyang's avatar
helloyongyang committed
116
117
        if self.weight_need_transpose:
            self.weight = self.weight.t()
118
119

    def load_quantized(self, weight_dict):
120
121
        self.weight = weight_dict[self.weight_name]
        self.weight_scale = weight_dict[self.weight_name.removesuffix(".weight") + ".weight_scale"].float()
122
123

    def load_fp8_perchannel_sym(self, weight_dict):
124
        if GET_RUNNING_FLAG() == "save_naive_quant" or self.config.get("weight_auto_quant", False):
125
            self.weight = weight_dict[self.weight_name].to(torch.float32)
126
127
128
129
130
131
            w_quantizer = FloatQuantizer("e4m3", True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.float8_e4m3fn)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
132
        self.bias = weight_dict[self.bias_name] if self.bias_name is not None else None
133
134

    def load_int8_perchannel_sym(self, weight_dict):
135
        if GET_RUNNING_FLAG() == "save_naive_quant" or self.config.get("weight_auto_quant", False):
136
            self.weight = weight_dict[self.weight_name].to(torch.float32)
137
138
139
140
141
142
            w_quantizer = IntegerQuantizer(8, True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.int8)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
143
        self.bias = weight_dict[self.bias_name] if self.bias_name is not None else None
144
145

    def load_fp8_perblock128_sym(self, weight_dict):
146
        if GET_RUNNING_FLAG() == "save_naive_quant" or self.config.get("weight_auto_quant", False):
147
            self.weight = weight_dict[self.weight_name]
148
149
150
            self.weight, self.weight_scale = self.per_block_cast_to_fp8(self.weight)
        else:
            self.load_quantized(weight_dict)
151
        self.bias = weight_dict[self.bias_name] if self.bias_name is not None else None
152
153
154
155
156
157
158
159
160
161
162

    def per_block_cast_to_fp8(self, x):
        assert x.dim() == 2
        m, n = x.shape
        x_padded = torch.zeros((deep_gemm.ceil_div(m, 128) * 128, deep_gemm.ceil_div(n, 128) * 128), dtype=x.dtype, device=x.device)
        x_padded[:m, :n] = x
        x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
        x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
        x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
        return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))

helloyongyang's avatar
helloyongyang committed
163
164
165
    # =========================
    # act quant kernels
    # =========================
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

    def act_quant_fp8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def act_quant_fp8_perchannel_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_int8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

    def act_quant_fp8_perchannelgroup128_sym_deepgemm(self, x):
        assert x.dim() == 2 and x.size(1) % 128 == 0
        m, n = x.shape
        x_view = x.view(m, -1, 128)
        x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
        return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1)

    def act_quant_fp8_perchannelgroup128_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, k // 128), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_group_quant_fp8(x, input_tensor_quant, input_tensor_scale, group_size=128, eps=1e-10, fp8_min=-448.0, fp8_max=448.0)
        return input_tensor_quant, input_tensor_scale

196
197
198
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
helloyongyang's avatar
helloyongyang committed
199
200
201
202
        if self.weight_need_transpose:
            destination[self.weight_name] = self.weight.cpu().detach().clone().t().contiguous()
        else:
            destination[self.weight_name] = self.weight.cpu().detach().clone().contiguous()
203
204
205
        if self.bias is not None:
            destination[self.bias_name] = self.bias.cpu().detach().clone()
        if hasattr(self, "weight_scale"):
206
            destination[self.weight_name.removesuffix(".weight") + ".weight_scale"] = self.weight_scale.cpu().detach().clone()
207
208
        return destination

209

Dongz's avatar
Dongz committed
210
@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm")
211
class MMWeightWfp8channelAfp8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
212
    """
helloyongyang's avatar
helloyongyang committed
213
214
215
216
217
218
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
219
220
    """

helloyongyang's avatar
helloyongyang committed
221
222
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
223
224
225
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
226
227
228
229
230
231

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
232
233
234

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias)
helloyongyang's avatar
helloyongyang committed
235
236
237
        return output_tensor


Dongz's avatar
Dongz committed
238
@MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm")
239
class MMWeightWint8channelAint8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
240
    """
helloyongyang's avatar
helloyongyang committed
241
242
243
244
245
246
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
247
248
    """

helloyongyang's avatar
helloyongyang committed
249
250
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
251
252
253
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
254
255
256
257
258
259

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
260
261
262

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias)
helloyongyang's avatar
helloyongyang committed
263
264
265
        return output_tensor


266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F")
class MMWeightWfp8channelAfp8channeldynamicQ8F(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Q8F
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
285
        output_tensor = Q8F.linear.fp8_linear(input_tensor_quant, self.weight, self.bias.float(), input_tensor_scale, self.weight_scale, out_dtype=torch.bfloat16)
286
287
288
        return output_tensor.squeeze(0)


Dongz's avatar
Dongz committed
289
@MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F")
290
class MMWeightWint8channelAint8channeldynamicQ8F(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
291
    """
292
293
294
295
296
297
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Q8F
Dongz's avatar
Dongz committed
298
299
    """

300
301
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
302
303
304
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
305

306
307
    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
308
        output_tensor = Q8F.linear.q8_linear(input_tensor_quant, self.weight, self.bias.float(), input_tensor_scale, self.weight_scale, fuse_gelu=False, out_dtype=torch.bfloat16)
309
310
311
        return output_tensor.squeeze(0)


312
313
@MM_WEIGHT_REGISTER("W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm")
class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
314
    """
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm

    Quant MM:
        Weight: fp8 perblock 128x128 sym
        Act: fp8 perchannel-pergroup group=128 dynamic sym
        Kernel: Deepgemm

    Reference: https://github.com/deepseek-ai/DeepGEMM

    Example:
        Act(1024, 2048) x Weight(2048, 4096) = Out(1024, 4096)

        Act : torch.Size([1024, 2048]), torch.float8_e4m3fn
        Act Scale: torch.Size([1024, 16]), torch.float32
        Weight : torch.Size([4096, 2048]), torch.float8_e4m3fn
        Weight Scale: torch.Size([32, 16]), torch.float32
        Out : torch.Size([1024, 4096]), torch.bfloat16
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perblock128_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_deepgemm

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        deep_gemm.gemm_fp8_fp8_bf16_nt((input_tensor_quant, input_tensor_scale), (self.weight, self.weight_scale), output_tensor)
        if self.bias is not None:
            output_tensor.add_(self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl")
class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemmActSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl

    Quant MM:
        Weight: fp8 perblock 128x128 sym
        Act: fp8 pertoken-pergroup group=128 dynamic sym
        Kernel: quant-mm using Deepgemm, act dynamic quant using Sgl-kernel
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perblock128_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_sgl

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        deep_gemm.gemm_fp8_fp8_bf16_nt((input_tensor_quant, input_tensor_scale), (self.weight, self.weight_scale), output_tensor)
        if self.bias is not None:
            output_tensor.add_(self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm-ActSgl")
class MMWeightWfp8channelAfp8channeldynamicVllmActSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm-ActSgl
387
388
389
390

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
391
        Kernel: quant-mm using vllm, act dynamic quant using Sgl-kernel
Dongz's avatar
Dongz committed
392
393
    """

394
395
    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
396
397
398
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl
399

400
401
402
403
404
405
406
407
408
409
410
    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        torch.ops._C.cutlass_scaled_mm(output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias)
        return output_tensor


helloyongyang's avatar
helloyongyang committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl-ActVllm")
class MMWeightWfp8channelAfp8channeldynamicSglActVllm(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl-ActVllm

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = sgl_kernel.fp8_scaled_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, torch.bfloat16, bias=self.bias)
        return output_tensor


434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
@MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl")
class MMWeightWfp8channelAfp8channeldynamicSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Sgl-kernel
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl
450
451

    def apply(self, input_tensor):
452
453
454
455
456
457
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = sgl_kernel.fp8_scaled_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, torch.bfloat16, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm")
helloyongyang's avatar
helloyongyang committed
458
class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate):
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm
    """

    def __init__(self, weight_name, bias_name):
        super().__init__(weight_name, bias_name)
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = sgl_kernel.int8_scaled_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, torch.bfloat16, self.bias)
        return output_tensor
483
484


Dongz's avatar
Dongz committed
485
if __name__ == "__main__":
helloyongyang's avatar
helloyongyang committed
486
    weight_dict = {
helloyongyang's avatar
helloyongyang committed
487
        "xx.weight": torch.randn(8192, 4096).to(torch.float8_e4m3fn),
Dongz's avatar
Dongz committed
488
489
        "xx.bias": torch.randn(8192).to(torch.bfloat16),
        "xx.weight_scale": torch.randn(8192, 1).to(torch.float32),
helloyongyang's avatar
helloyongyang committed
490
491
    }

Dongz's avatar
Dongz committed
492
493
    mm_weight = MM_WEIGHT_REGISTER["W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias")
    mm_weight.set_config({"weight_auto_quant": False})
helloyongyang's avatar
helloyongyang committed
494
495
496
    mm_weight.load(weight_dict)
    input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda()
    output_tensor = mm_weight.apply(input_tensor)
root's avatar
root committed
497
    logger.info(output_tensor.shape)
helloyongyang's avatar
helloyongyang committed
498
499

    weight_dict = {
Dongz's avatar
Dongz committed
500
501
        "xx.weight": torch.randn(8192, 4096),
        "xx.bias": torch.randn(8192).to(torch.bfloat16),
helloyongyang's avatar
helloyongyang committed
502
503
    }

Dongz's avatar
Dongz committed
504
505
    mm_weight = MM_WEIGHT_REGISTER["W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias")
    mm_weight.set_config({"weight_auto_quant": True})
helloyongyang's avatar
helloyongyang committed
506
507
508
    mm_weight.load(weight_dict)
    input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda()
    output_tensor = mm_weight.apply(input_tensor)
root's avatar
root committed
509
    logger.info(output_tensor.shape)
helloyongyang's avatar
helloyongyang committed
510
511

    weight_dict = {
Dongz's avatar
Dongz committed
512
513
        "xx.weight": torch.randn(8192, 4096),
        "xx.bias": torch.randn(8192).to(torch.bfloat16),
helloyongyang's avatar
helloyongyang committed
514
515
    }

Dongz's avatar
Dongz committed
516
517
    mm_weight = MM_WEIGHT_REGISTER["W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias")
    mm_weight.set_config({"weight_auto_quant": True})
helloyongyang's avatar
helloyongyang committed
518
519
520
    mm_weight.load(weight_dict)
    input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda()
    output_tensor = mm_weight.apply(input_tensor)
root's avatar
root committed
521
    logger.info(output_tensor.shape)