mm_weight.py 50.7 KB
Newer Older
1
import re
helloyongyang's avatar
helloyongyang committed
2
from abc import ABCMeta, abstractmethod
PengGao's avatar
PengGao committed
3
4

import torch
Dongz's avatar
Dongz committed
5

PengGao's avatar
PengGao committed
6
from lightx2v.utils.envs import *
yihuiwen's avatar
yihuiwen committed
7
8
from lightx2v.utils.ggml_tensor import GGMLTensor
from lightx2v.utils.ggml_tensor import dequantize_tensor as gguf_dequantize_tensor
9
from lightx2v.utils.global_paras import CALIB
PengGao's avatar
PengGao committed
10
11
12
from lightx2v.utils.quant_utils import FloatQuantizer, IntegerQuantizer
from lightx2v.utils.registry_factory import MM_WEIGHT_REGISTER

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
try:
    from lightx2v_kernel.gemm import (
        cutlass_scaled_mxfp4_mm,
        cutlass_scaled_mxfp6_mxfp8_mm,
        cutlass_scaled_mxfp8_mm,
        cutlass_scaled_nvfp4_mm,
        scaled_mxfp4_quant,
        scaled_mxfp6_quant,
        scaled_mxfp8_quant,
        scaled_nvfp4_quant,
    )
except ImportError:
    scaled_nvfp4_quant, cutlass_scaled_nvfp4_mm = None, None
    scaled_mxfp4_quant, cutlass_scaled_mxfp4_mm = None, None
    scaled_mxfp6_quant, cutlass_scaled_mxfp6_mxfp8_mm = None, None
    scaled_mxfp8_quant, cutlass_scaled_mxfp8_mm = None, None

gushiqiao's avatar
gushiqiao committed
30
31
32
33
34
35
36
37
38
39
try:
    from vllm import _custom_ops as ops
except ImportError:
    ops = None

try:
    import sgl_kernel
except ImportError:
    sgl_kernel = None

40
try:
gushiqiao's avatar
gushiqiao committed
41
    from q8_kernels.functional.linear import q8_linear
42
except ImportError:
gushiqiao's avatar
gushiqiao committed
43
44
45
46
47
48
    q8_linear = None

try:
    from q8_kernels.functional.linear import fp8_linear
except ImportError:
    fp8_linear = None
helloyongyang's avatar
helloyongyang committed
49

50
51
52
53
54
try:
    import deep_gemm
except ImportError:
    deep_gemm = None

gushiqiao's avatar
gushiqiao committed
55
try:
Wq-dd's avatar
Wq-dd committed
56
    from torchao.quantization.utils import quant_int8_per_token_matmul, quantize_activation_per_token_absmax
57
except ImportError:
gushiqiao's avatar
gushiqiao committed
58
59
    quant_int8_per_token_matmul, quantize_activation_per_token_absmax = None, None

60
61
62
63
64
try:
    import gguf
except ImportError:
    gguf = None

65
66
try:
    import marlin_cuda_quant
67
except ImportError:
68
    marlin_cuda_quant = None
helloyongyang's avatar
helloyongyang committed
69

Kane's avatar
Kane committed
70
71
72
73
74
try:
    import torch_mlu_ops as tmo
except ImportError:
    tmo = None

75

helloyongyang's avatar
helloyongyang committed
76
class MMWeightTemplate(metaclass=ABCMeta):
77
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
helloyongyang's avatar
helloyongyang committed
78
79
        self.weight_name = weight_name
        self.bias_name = bias_name
80
        self.create_cuda_buffer = create_cuda_buffer
gushiqiao's avatar
fix.  
gushiqiao committed
81
82
        self.lazy_load = lazy_load
        self.lazy_load_file = lazy_load_file
83
        self.is_post_adapter = is_post_adapter
helloyongyang's avatar
helloyongyang committed
84
85
86
87
88
89
90
        self.config = {}

    @abstractmethod
    def load(self, weight_dict):
        pass

    @abstractmethod
91
    def apply(self):
helloyongyang's avatar
helloyongyang committed
92
93
        pass

94
95
    def set_config(self, config={}):
        self.config = config
helloyongyang's avatar
helloyongyang committed
96

gushiqiao's avatar
gushiqiao committed
97
    def to_cuda(self, non_blocking=False):
gushiqiao's avatar
gushiqiao committed
98
99
100
101
102
        self.weight = self.pin_weight.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_weight_scale"):
            self.weight_scale = self.pin_weight_scale.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_bias") and self.pin_bias is not None:
            self.bias = self.pin_bias.cuda(non_blocking=non_blocking)
gushiqiao's avatar
gushiqiao committed
103

104
    def to_cpu(self, non_blocking=False):
gushiqiao's avatar
gushiqiao committed
105
106
107
108
109
110
111
112
113
114
115
116
        if hasattr(self, "pin_weight"):
            self.weight = self.pin_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
            if hasattr(self, "weight_scale_name"):
                self.weight_scale = self.pin_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu()
            if self.bias is not None:
                self.bias = self.pin_bias.copy_(self.bias, non_blocking=non_blocking).cpu()
        else:
            self.weight = self.weight.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "weight_scale"):
                self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to("cpu", non_blocking=non_blocking)
117

helloyongyang's avatar
helloyongyang committed
118

Dongz's avatar
Dongz committed
119
@MM_WEIGHT_REGISTER("Default")
helloyongyang's avatar
helloyongyang committed
120
class MMWeight(MMWeightTemplate):
121
122
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
helloyongyang's avatar
helloyongyang committed
123
124

    def load(self, weight_dict):
125
126
        if self.create_cuda_buffer:
            self.weight_cuda_buffer = weight_dict[self.weight_name].t().cuda()
127
            if self.bias_name is not None:
128
129
130
                self.bias_cuda_buffer = weight_dict[self.bias_name].cuda()
        else:
            device = weight_dict[self.weight_name].device
Kane's avatar
Kane committed
131
            if device.type in ["cuda", "mlu", "npu"]:
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                self.weight = weight_dict[self.weight_name].t()
                if self.bias_name is not None:
                    self.bias = weight_dict[self.bias_name]
                else:
                    self.bias = None

            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype

                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight = self.pin_weight.copy_(weight_dict[self.weight_name]).t()

                if self.bias_name is not None:
                    bias_shape = weight_dict[self.bias_name].shape
                    bias_dtype = weight_dict[self.bias_name].dtype
                    self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                    self.pin_bias.copy_(weight_dict[self.bias_name])
                else:
                    self.bias = None
                    self.pin_bias = None
                del weight_dict[self.weight_name]
gushiqiao's avatar
gushiqiao committed
154

155
            else:
156
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
helloyongyang's avatar
helloyongyang committed
157

158
159
160
161
162
    def _calculate_size(self):
        if self.bias is not None:
            return self.weight.numel() * self.weight.element_size() + self.bias.numel() * self.bias.element_size()
        return self.weight.numel() * self.weight.element_size()

helloyongyang's avatar
helloyongyang committed
163
164
165
166
167
168
169
170
171
    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)

helloyongyang's avatar
helloyongyang committed
172
173
174
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
175
176
177
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias
helloyongyang's avatar
helloyongyang committed
178
179
        return destination

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            assert adapter_block_index is not None
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)

        if self.bias_name is not None:
            if self.is_post_adapter:
                assert adapter_block_index is not None
                bias_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.bias_name, count=1)
            else:
                bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

helloyongyang's avatar
helloyongyang committed
203

Dongz's avatar
Dongz committed
204
@MM_WEIGHT_REGISTER("Default-Force-FP32")
205
class MMWeightForceFP32(MMWeight):
206
207
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
helloyongyang's avatar
helloyongyang committed
208
209
210
211

    def load(self, weight_dict):
        super().load(weight_dict)
        self.weight = self.weight.to(torch.float32)
212
        if hasattr(self, "bias") and self.bias is not None:
helloyongyang's avatar
helloyongyang committed
213
214
215
            self.bias = self.bias.to(torch.float32)


216
class MMWeightQuantTemplate(MMWeightTemplate):
217
218
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
219
        self.weight_scale_name = self.weight_name.removesuffix(".weight") + ".weight_scale"
220
221
222
        self.load_func = None
        self.weight_need_transpose = True
        self.act_quant_func = None
223
224
        self.lazy_load = lazy_load
        self.lazy_load_file = lazy_load_file
225
        self.infer_dtype = GET_DTYPE()
226

helloyongyang's avatar
helloyongyang committed
227
228
229
    # =========================
    # weight load functions
    # =========================
230

231
    def load_from_disk(self):  # Need Rewrite
232
233
234
235
        if not torch._dynamo.is_compiling():
            self.weight = self.lazy_load_file.get_tensor(self.weight_name).pin_memory()
            self.weight_scale = self.lazy_load_file.get_tensor(self.weight_scale_name).float().pin_memory()
            if self.bias_name is not None:
236
                self.bias = self.lazy_load_file.get_tensor(self.bias_name).to(self.infer_dtype).pin_memory()
237
238
239
240
        else:
            self.weight = self.lazy_load_file.get_tensor(self.weight_name)
            self.weight_scale = self.lazy_load_file.get_tensor(self.weight_scale_name).float()
            if self.bias_name is not None:
241
                self.bias = self.lazy_load_file.get_tensor(self.bias_name).to(self.infer_dtype)
242

helloyongyang's avatar
helloyongyang committed
243
244
        if self.weight_need_transpose:
            self.weight = self.weight.t()
245

246
247
248
249
    def load(self, weight_dict):
        if not self.lazy_load:
            self.load_func(weight_dict)
            if self.weight_need_transpose:
gushiqiao's avatar
gushiqiao committed
250
251
                if hasattr(self, "weight"):
                    self.weight = self.weight.t()
252
                if hasattr(self, "pin_weight"):
gushiqiao's avatar
gushiqiao committed
253
                    self.pin_weight = self.pin_weight.t()
254
255
                if hasattr(self, "weight_cuda_buffer"):
                    self.weight_cuda_buffer = self.weight_cuda_buffer.t()
256
257

    def clear(self):
gushiqiao's avatar
gushiqiao committed
258
        attrs = ["weight", "weight_scale", "bias", "pin_weight", "pin_weight_scale", "pin_bias"]
259
260
261
262
263
264
265
266
267
268
        for attr in attrs:
            if hasattr(self, attr):
                delattr(self, attr)
                setattr(self, attr, None)

    def _calculate_size(self):
        if self.bias is not None:
            return self.weight.numel() * self.weight.element_size() + self.weight_scale.numel() * self.weight_scale.element_size() + self.bias.numel() * self.bias.element_size()
        return self.weight.numel() * self.weight.element_size() + self.weight_scale.numel() * self.weight_scale.element_size()

269
    def load_quantized(self, weight_dict):
270
271
272
273
274
275
        if self.create_cuda_buffer:
            # move to cuda buffer
            self.weight_cuda_buffer = weight_dict[self.weight_name].cuda()
            self.weight_scale_cuda_buffer = weight_dict[self.weight_scale_name].float().cuda()
        else:
            device = weight_dict[self.weight_name].device
Kane's avatar
Kane committed
276
            if device.type in ["cuda", "mlu", "npu"]:
277
278
279
280
281
282
283
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name].float()
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = torch.float
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

        if self.bias_name is not None:
            if self.create_cuda_buffer:
                # move to cuda buffer
                self.bias_cuda_buffer = weight_dict[self.bias_name].cuda()
            else:
                device = weight_dict[self.bias_name].device
                if device.type == "cuda":
                    self.bias = weight_dict[self.bias_name]
                elif device.type == "cpu":
                    bias_shape = weight_dict[self.bias_name].shape
                    bias_dtype = weight_dict[self.bias_name].dtype
                    self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                    self.pin_bias.copy_(weight_dict[self.bias_name])
                else:
                    raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
gushiqiao's avatar
gushiqiao committed
308
        else:
309
310
            self.bias = None
            self.pin_bias = None
311
312

    def load_fp8_perchannel_sym(self, weight_dict):
313
        if self.config.get("weight_auto_quant", False):
314
            self.weight = weight_dict[self.weight_name].to(torch.float32)
315
316
317
318
319
320
            w_quantizer = FloatQuantizer("e4m3", True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.float8_e4m3fn)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
321

322
    def load_int8_perchannel_sym(self, weight_dict):
323
        if self.config.get("weight_auto_quant", False):
324
            self.weight = weight_dict[self.weight_name].to(torch.float32)
325
326
327
328
329
330
            w_quantizer = IntegerQuantizer(8, True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.int8)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
331

332
333
334
335
336
337
338
339
    def load_mxfp4(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp4_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
Kane's avatar
Kane committed
340
            if device.type in ["cuda", "mlu", "npu"]:
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

    def load_mxfp6(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp6_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
            if device.type == "cuda":
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

    def load_mxfp8(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp8_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
            if device.type == "cuda":
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

    def load_nvfp4(self, weight_dict):
        device = weight_dict[self.weight_name].device

        input_absmax = weight_dict[self.weight_name.replace(".weight", ".input_absmax")]
        input_global_scale = (2688.0 / input_absmax).to(torch.float32)
        weight_global_scale = weight_dict[f"{self.weight_name}_global_scale"]
        alpha = 1.0 / (input_global_scale * weight_global_scale)

        if device.type == "cuda":
            self.weight = weight_dict[self.weight_name]
            self.weight_scale = weight_dict[self.weight_scale_name]
            self.input_global_scale = input_global_scale
            self.alpha = alpha
        elif device.type == "cpu":
            weight_shape = weight_dict[self.weight_name].shape
            weight_dtype = weight_dict[self.weight_name].dtype
            self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
            self.pin_weight.copy_(weight_dict[self.weight_name])

            weight_scale_shape = weight_dict[self.weight_scale_name].shape
            weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
            self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
            self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])

            input_global_scale_shape = input_global_scale.shape
            input_global_scale_dtype = input_global_scale.dtype
            self.pin_input_global_scale = torch.empty(input_global_scale_shape, pin_memory=True, dtype=input_global_scale_dtype)
            self.pin_input_global_scale.copy_(input_global_scale)

            alpha_shape = alpha.shape
            alpha_dtype = alpha.dtype
            self.pin_alpha = torch.empty(alpha_shape, pin_memory=True, dtype=alpha_dtype)
            self.pin_alpha.copy_(alpha)

            del weight_dict[self.weight_name]
        else:
            raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

445
    def load_fp8_perblock128_sym(self, weight_dict):
446
        if self.config.get("weight_auto_quant", False):
447
            self.weight = weight_dict[self.weight_name]
448
449
450
            self.weight, self.weight_scale = self.per_block_cast_to_fp8(self.weight)
        else:
            self.load_quantized(weight_dict)
451

452
453
454
    def per_block_cast_to_fp8(self, x):
        assert x.dim() == 2
        m, n = x.shape
455
456
457
458
459
        x_padded = torch.zeros(
            (deep_gemm.ceil_div(m, 128) * 128, deep_gemm.ceil_div(n, 128) * 128),
            dtype=x.dtype,
            device=x.device,
        )
460
461
462
463
464
465
        x_padded[:m, :n] = x
        x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
        x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
        x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
        return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))

helloyongyang's avatar
helloyongyang committed
466
467
468
    # =========================
    # act quant kernels
    # =========================
gushiqiao's avatar
gushiqiao committed
469
470
471
    def act_quant_int8_perchannel_sym_torchao(self, x):
        input_tensor_quant, input_tensor_scale = quantize_activation_per_token_absmax(x)
        return input_tensor_quant, input_tensor_scale
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

    def act_quant_fp8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def act_quant_fp8_perchannel_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_int8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

488
489
490
491
492
493
494
495
496
497
498
499
    def act_quant_nvfp4(self, x):
        input_tensor_quant, input_tensor_scale = scaled_nvfp4_quant(x, self.input_global_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_mxfp4(self, x):
        input_tensor_quant, input_tensor_scale = scaled_mxfp4_quant(x)
        return input_tensor_quant, input_tensor_scale

    def act_quant_mxfp8(self, x):
        input_tensor_quant, input_tensor_scale = scaled_mxfp8_quant(x)
        return input_tensor_quant, input_tensor_scale

500
501
502
503
504
505
506
507
508
509
510
    def act_quant_fp8_perchannelgroup128_sym_deepgemm(self, x):
        assert x.dim() == 2 and x.size(1) % 128 == 0
        m, n = x.shape
        x_view = x.view(m, -1, 128)
        x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
        return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1)

    def act_quant_fp8_perchannelgroup128_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, k // 128), dtype=torch.float32, device="cuda", requires_grad=False)
511
512
513
514
515
516
517
518
519
        sgl_kernel.sgl_per_token_group_quant_fp8(
            x,
            input_tensor_quant,
            input_tensor_scale,
            group_size=128,
            eps=1e-10,
            fp8_min=-448.0,
            fp8_max=448.0,
        )
520
521
        return input_tensor_quant, input_tensor_scale

522
523
524
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
525
526
527
528
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias
        destination[self.weight_scale_name] = self.pin_weight_scale if hasattr(self, "pin_weight_scale") else self.weight_scale
529
530
        return destination

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
            weight_scale_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_scale_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)
            weight_scale_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_scale_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)
        self.weight_scale = self.weight_scale_cuda_buffer.copy_(destination[weight_scale_name], non_blocking=True)

        if self.bias_name is not None:
            bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

552

553
@MM_WEIGHT_REGISTER("fp8-vllm")
554
class MMWeightWfp8channelAfp8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
555
    """
helloyongyang's avatar
helloyongyang committed
556
557
558
559
560
561
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
562
563
    """

564
565
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
566
567
568
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
569
570
571
572
573
574

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
575
576

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
577
578
579
580
581
582
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
gushiqiao's avatar
gushiqiao committed
583
            self.bias if self.bias is not None else None,
584
        )
helloyongyang's avatar
helloyongyang committed
585
586
587
        return output_tensor


588
@MM_WEIGHT_REGISTER("int8-vllm")
589
class MMWeightWint8channelAint8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
590
    """
helloyongyang's avatar
helloyongyang committed
591
592
593
594
595
596
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
597
598
    """

599
600
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
601
602
603
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
604
605
606
607
608
609

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
610
611

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
612
613
614
615
616
617
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
gushiqiao's avatar
gushiqiao committed
618
            self.bias if self.bias is not None else None,
619
        )
helloyongyang's avatar
helloyongyang committed
620
621
622
        return output_tensor


623
624
625
626
627
628
629
630
631
632
@MM_WEIGHT_REGISTER("mxfp4")
class MMWeightWmxfp4Amxfp4dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp4-A-mxfp4-dynamic

    Quant MM:
        Weight: mxfp4
        Act: mxfp4
    """

633
634
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        self.load_func = self.load_mxfp4
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp4
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp4_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("mxfp6-mxfp8")
class MMWeightWmxfp6Amxfp8dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp6-A-nvfp8-dynamic

    Quant MM:
        Weight: mxfp6
        Act: mxfp8
    """

660
661
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
        self.load_func = self.load_mxfp6
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp8
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp6_mxfp8_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("mxfp8")
class MMWeightWmxfp8Amxfp8dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp8-A-nvfp8-dynamic

    Quant MM:
        Weight: mxfp8
        Act: mxfp8
    """

687
688
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        self.load_func = self.load_mxfp8
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp8
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp8_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("nvfp4")
class MMWeightWnvfp4Anvfp4dynamic(MMWeightQuantTemplate):
    """
    Name: W-nvfp4-A-nvfp4-dynamic

    Quant MM:
        Weight: nvfp4
        Act: nvfp4
    """

714
715
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        self.load_func = self.load_nvfp4
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_nvfp4

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = cutlass_scaled_nvfp4_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor

    def to_cuda(self, non_blocking=False):
        self.weight = self.pin_weight.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_weight_scale"):
            self.weight_scale = self.pin_weight_scale.cuda(non_blocking=non_blocking)
            self.input_global_scale = self.pin_input_global_scale.cuda(non_blocking=non_blocking)
            self.alpha = self.pin_alpha.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_bias") and self.pin_bias is not None:
            self.bias = self.pin_bias.cuda(non_blocking=non_blocking)

    def to_cpu(self, non_blocking=False):
        if hasattr(self, "pin_weight"):
            self.weight = self.pin_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
            if hasattr(self, "weight_scale_name"):
                self.weight_scale = self.pin_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu()
                self.input_global_scale = self.pin_input_global_scale.copy_(self.input_global_scale, non_blocking=non_blocking).cpu()
                self.alpha = self.pin_alpha.copy_(self.alpha, non_blocking=non_blocking).cpu()
            if self.bias is not None:
                self.bias = self.pin_bias.copy_(self.bias, non_blocking=non_blocking).cpu()
        else:
            self.weight = self.weight.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "weight_scale"):
                self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
                self.input_global_scale = self.input_global_scale.to("cpu", non_blocking=non_blocking)
                self.alpha = self.alpha.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to("cpu", non_blocking=non_blocking)


@MM_WEIGHT_REGISTER("Calib")
class MMCalibNvfp4(MMWeight):
    """
    Name: calib

    Calib:
        absmax: torch.max(torch.abs(input_tensor))
    """

762
763
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
        self.running_absmax = None
        self.count = 0
        self.decay = 0.9

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype, device = input_tensor.dtype, input_tensor.device

        current_absmax = torch.max(torch.abs(input_tensor)).to("cpu")
        if self.count % 2 == 0:
            if self.running_absmax is None:
                self.running_absmax = current_absmax
            else:
                self.running_absmax = self.decay * self.running_absmax + (1 - self.decay) * current_absmax
            CALIB["absmax"][self.weight_name] = self.running_absmax
        self.count = self.count + 1

        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)


787
@MM_WEIGHT_REGISTER("fp8-q8f")
788
789
790
791
792
793
794
795
796
797
class MMWeightWfp8channelAfp8channeldynamicQ8F(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Q8F
    """

798
799
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
800
801
802
803
804
805
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
gushiqiao's avatar
gushiqiao committed
806
        output_tensor = fp8_linear(
807
808
            input_tensor_quant,
            self.weight,
gushiqiao's avatar
gushiqiao committed
809
            self.bias.float() if self.bias is not None else None,
810
811
            input_tensor_scale,
            self.weight_scale,
812
            out_dtype=self.infer_dtype,
813
        )
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
814
        return output_tensor.squeeze(0) if len(output_tensor.shape) == 3 else output_tensor
815
816


817
@MM_WEIGHT_REGISTER("int8-q8f")
818
class MMWeightWint8channelAint8channeldynamicQ8F(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
819
    """
820
821
822
823
824
825
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Q8F
Dongz's avatar
Dongz committed
826
827
    """

828
829
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
830
831
832
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
833

834
835
    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
gushiqiao's avatar
gushiqiao committed
836
        output_tensor = q8_linear(
837
838
            input_tensor_quant,
            self.weight,
gushiqiao's avatar
gushiqiao committed
839
            self.bias.float() if self.bias is not None else None,
840
841
842
            input_tensor_scale,
            self.weight_scale,
            fuse_gelu=False,
843
            out_dtype=self.infer_dtype,
844
        )
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
845
        return output_tensor.squeeze(0) if len(output_tensor.shape) == 3 else output_tensor
846
847


848
@MM_WEIGHT_REGISTER("fp8-b128-deepgemm")
849
850
851
852
853
854
855
856
857
858
class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemmActSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl

    Quant MM:
        Weight: fp8 perblock 128x128 sym
        Act: fp8 pertoken-pergroup group=128 dynamic sym
        Kernel: quant-mm using Deepgemm, act dynamic quant using Sgl-kernel
    """

859
860
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
861
862
863
864
865
866
867
868
869
870
871
        self.load_func = self.load_fp8_perblock128_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_sgl

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
872
873
874
875
876
877
        deep_gemm.gemm_fp8_fp8_bf16_nt(
            (input_tensor_quant, input_tensor_scale),
            (self.weight, self.weight_scale),
            output_tensor,
        )
        if hasattr(self, "bias") and self.bias is not None:
878
879
880
881
            output_tensor.add_(self.bias)
        return output_tensor


882
@MM_WEIGHT_REGISTER("fp8-sgl")
883
884
885
886
887
888
889
890
891
892
class MMWeightWfp8channelAfp8channeldynamicSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Sgl-kernel
    """

893
894
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
895
896
897
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl
898
899

    def apply(self, input_tensor):
900
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
901
902
903
904
905
        output_tensor = sgl_kernel.fp8_scaled_mm(
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
906
            self.infer_dtype,
907
908
            bias=self.bias,
        )
909
910
911
        return output_tensor


912
@MM_WEIGHT_REGISTER("int8-sgl")
helloyongyang's avatar
helloyongyang committed
913
class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate):
914
915
916
917
918
919
920
921
922
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm
    """

923
924
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
925
926
927
928
929
930
931
932
933
934
935
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
936
937
938
939
940
        output_tensor = sgl_kernel.int8_scaled_mm(
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
941
            self.infer_dtype,
gushiqiao's avatar
gushiqiao committed
942
            self.bias if self.bias is not None else None,
943
        )
944
        return output_tensor
945
946


947
@MM_WEIGHT_REGISTER("int8-torchao")
gushiqiao's avatar
gushiqiao committed
948
949
950
951
952
953
954
955
956
957
class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate):
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Torchao

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Torchao
    """

958
959
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
gushiqiao's avatar
gushiqiao committed
960
961
962
963
964
965
966
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_torchao

    def apply(self, input_tensor):
        input_tensor = input_tensor
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
967
        output_tensor = quant_int8_per_token_matmul(input_tensor_quant, input_tensor_scale, self.weight, self.weight_scale.t().float(), output_dtype=self.infer_dtype)
gushiqiao's avatar
gushiqiao committed
968
969
970
971
972
973
        if self.bias is not None:
            output_tensor = output_tensor + self.bias

        return output_tensor


yihuiwen's avatar
yihuiwen committed
974
class MMWeightGGUFTemplate(MMWeightTemplate):
975
976
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
977

yihuiwen's avatar
yihuiwen committed
978
979
980
    def load(self, weight_dict):
        assert not self.create_cuda_buffer, "GGUF Unsupported offload block"
        self.weight = weight_dict[self.weight_name]
981

yihuiwen's avatar
yihuiwen committed
982
983
        weight_shape = self.weight.shape
        weight_dtype = self.weight.dtype
984

yihuiwen's avatar
yihuiwen committed
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        if isinstance(self.weight, GGMLTensor):
            self.pin_weight = GGMLTensor.empty_pinned(weight_shape, orig_shape=self.weight.orig_shape, dtype=weight_dtype, gguf_type=self.weight.gguf_type)
            self.pin_weight.copy_from(self.weight)
        else:
            self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
            self.pin_weight.copy_(weight_dict[self.weight_name])

        if self.bias_name is not None:
            self.bias = weight_dict[self.bias_name]
            if isinstance(self.bias, GGMLTensor):
                self.pin_bias = GGMLTensor.empty_pinned(self.bias.shape, orig_shape=self.bias.orig_shape, dtype=self.bias.dtype, gguf_type=self.bias.gguf_type)
                self.pin_bias.copy_from(self.bias)
            else:
                self.pin_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
        else:
            self.bias = None

    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            assert adapter_block_index is not None
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)

        if self.bias_name is not None:
            if self.is_post_adapter:
                assert adapter_block_index is not None
                bias_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.bias_name, count=1)
            else:
                bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias

        return destination

    def get_weight(self, tensor, dtype):
        if tensor is None:
            return

        device = tensor.device
        weight = gguf_dequantize_tensor(tensor, dtype)
        # prevent propagating custom tensor class
        if isinstance(weight, GGMLTensor):
            weight = torch.Tensor(weight)

        return weight

    def cast_bias_weight(self, input_tensor=None, dtype=None, device=None, bias_dtype=None):
        if input_tensor is not None:
            if dtype is None:
                dtype = getattr(input_tensor, "dtype", torch.float32)

        bias = None
        if self.bias is not None:
            bias = self.get_weight(self.bias, dtype)

        weight = self.get_weight(self.weight, dtype)
        return weight, bias

    def apply(self, input_tensor):
        weight, bias = self.cast_bias_weight(input_tensor)
        return torch.nn.functional.linear(input_tensor, weight, bias)


@MM_WEIGHT_REGISTER("gguf-BF16")
class MMWeightGGUFBF16(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.BF16


@MM_WEIGHT_REGISTER("gguf-Q8_0")
class MMWeightGGUFQ80(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q8_0


@MM_WEIGHT_REGISTER("gguf-Q6_K")
class MMWeightGGUFQ6K(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_K_S")
class MMWeightGGUFQ5KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_K_M")
class MMWeightGGUFQ5KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_1")
class MMWeightGGUFQ51(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_1


@MM_WEIGHT_REGISTER("gguf-Q5_0")
class MMWeightGGUFQ50(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_0


@MM_WEIGHT_REGISTER("gguf-Q4_K_M")
class MMWeightGGUFQ4KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_0


@MM_WEIGHT_REGISTER("gguf-Q4_K_S")
class MMWeightGGUFQ4KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_K


@MM_WEIGHT_REGISTER("gguf-Q4_1")
class MMWeightGGUFQ41(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_1


@MM_WEIGHT_REGISTER("gguf-Q4_0")
class MMWeightGGUFQ40(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_0


@MM_WEIGHT_REGISTER("gguf-Q3_K_M")
class MMWeightGGUFQ3KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q3_K


@MM_WEIGHT_REGISTER("gguf-Q3_K_S")
class MMWeightGGUFQ3KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q2_K
1127

1128

1129
@MM_WEIGHT_REGISTER("int4-g128-marlin")
1130
1131
1132
1133
1134
1135
1136
1137
class MMWeightWint4group128Marlin(MMWeightQuantTemplate):
    """
    Name: "W-int4-group128-sym-Marlin

    Quant int4 x FP16:
        Weight: int4 pergroup sym
        Kernel: Marlin
    """
1138

1139
1140
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
1141
1142
1143
1144
1145
1146
        self.load_func = self.load_quantized

    def load(self, weight_dict):
        assert not self.lazy_load
        self.load_func(weight_dict)
        self.workspace = weight_dict[f"{self.weight_name}_workspace"]
gushiqiao's avatar
gushiqiao committed
1147

1148
        if self.bias_name is not None:
gushiqiao's avatar
gushiqiao committed
1149
1150
            bias_shape = weight_dict[self.bias_name].shape
            bias_dtype = weight_dict[self.bias_name].dtype
1151
1152
            self.bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
            self.bias.copy_(weight_dict[self.bias_name])
1153
1154
        else:
            self.bias = None
1155

1156
1157
1158
1159
1160
1161
    def apply(self, input_tensor):
        output_tensor = torch.empty(input_tensor.shape[:-1] + (self.weight_scale.shape[1],), dtype=input_tensor.dtype, device=input_tensor.device)
        marlin_cuda_quant.mul(input_tensor, self.weight, output_tensor, self.weight_scale.half(), self.workspace, -1, -1, -1, -1)
        if hasattr(self, "bias") and self.bias is not None:
            output_tensor.add_(self.bias)
        return output_tensor
Kane's avatar
Kane committed
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189


@MM_WEIGHT_REGISTER("int8-tmo")
class MMWeightWint8channelAint8channeldynamicMlu(MMWeightQuantTemplate):
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Mlu

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: mlu
    """

    def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None):
        super().__init__(weight_name, bias_name, lazy_load, lazy_load_file)
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_int8_perchannel_sym_tmo

    def act_quant_int8_perchannel_sym_tmo(self, x):
        input_tensor_quant, input_tensor_scale = tmo.scaled_quantize(x)
        return input_tensor_quant, input_tensor_scale

    def apply(self, input_tensor):
        dtype = input_tensor.dtype
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = tmo.scaled_matmul(input_tensor_quant, self.weight.contiguous(), input_tensor_scale, self.weight_scale.squeeze(-1), output_dtype=dtype, use_hp_active=True)
        return output_tensor