1. 13 Mar, 2020 2 commits
  2. 12 Mar, 2020 2 commits
  3. 11 Mar, 2020 1 commit
  4. 10 Mar, 2020 3 commits
  5. 04 Mar, 2020 2 commits
  6. 25 Feb, 2020 1 commit
  7. 14 Feb, 2020 1 commit
  8. 13 Feb, 2020 2 commits
  9. 04 Feb, 2020 1 commit
    • F-G Fernandez's avatar
      Added __repr__ attribute to GeneralizedRCNNTransform (#1834) · e2573a71
      F-G Fernandez authored
      * feat: Added __repr__ attribute to GeneralizedRCNNTransform
      
      Added more details to default __repr__ attribute for printing.
      
      * fix: Put back relative imports
      
      * style: Fixed pep8 compliance
      
      Switched strings with  syntax to f-strings.
      
      * test: Added test for GeneralizedRCNNTransform __repr__
      
      Checked integrity of __repr__ attribute
      
      * test: Fixed unittest for __repr__
      
      Fixed the formatted strings in the __repr__ integrity check for GeneralizedRCNNTransform
      
      * fix: Fixed f-strings for earlier python versions
      
      Switched back f-strings to .format syntax for Python3.5 compatibility.
      
      * fix: Fixed multi-line string
      
      Fixed multiple-line string syntax for compatibility
      
      * fix: Fixed GeneralizedRCNNTransform unittest
      
      Fixed formatting of min_size argument of the resizing part
      e2573a71
  10. 30 Jan, 2020 1 commit
  11. 27 Jan, 2020 1 commit
  12. 22 Jan, 2020 1 commit
  13. 17 Jan, 2020 1 commit
  14. 16 Jan, 2020 1 commit
  15. 13 Jan, 2020 2 commits
  16. 03 Jan, 2020 1 commit
  17. 02 Jan, 2020 2 commits
  18. 17 Dec, 2019 1 commit
  19. 16 Dec, 2019 1 commit
  20. 11 Dec, 2019 1 commit
  21. 05 Dec, 2019 2 commits
  22. 30 Nov, 2019 1 commit
    • driazati's avatar
      Add tests for results in script vs eager mode (#1430) · 227027d5
      driazati authored
      * Add tests for results in script vs eager mode
      
      This copies some logic from `test_jit.py` to check that a TorchScript'ed
      model's outputs are the same as outputs from the model in eager mode.
      
      To support differences in TorchScript / eager mode outputs, an
      `unwrapper` function can be provided per-model.
      
      * Fix inception, use PYTORCH_TEST_WITH_SLOW
      
      * Update
      
      * Remove assertNestedTensorObjectsEqual
      
      * Add PYTORCH_TEST_WITH_SLOW to CircleCI config
      
      * Add MaskRCNN unwrapper
      
      * fix prec args
      
      * Remove CI changes
      
      * update
      
      * Update
      
      * remove expect changes
      
      * Fix tolerance bug
      
      * Fix breakages
      
      * Fix quantized resnet
      
      * Fix merge errors and simplify code
      
      * DeepLabV3 has been fixed
      
      * Temporarily disable jit compilation
      227027d5
  23. 25 Nov, 2019 1 commit
    • eellison's avatar
      Make maskrcnn scriptable (#1407) · d88d8961
      eellison authored
      * almost working...
      
      * respond to comments
      
      * add empty tensor op, handle different output types in generalized rcnn
      
      * clean ups
      
      * address comments
      
      * more changes
      
      * it's working!
      
      * torchscript bugs
      
      * add script/ eager test
      
      * eval script model
      
      * fix flake
      
      * division import
      
      * py2 compat
      
      * update test, fix arange bug
      
      * import division statement
      
      * fix linter
      
      * fixes
      
      * changes needed for JIT master
      
      * cleanups
      
      * remove imagelist_to
      
      * requested changes
      
      * Make FPN backwards-compatible and torchscript compatible
      
      We remove support for feature channels=0, but support for it was already a bit limited
      
      * Fix ONNX regression
      d88d8961
  24. 21 Nov, 2019 1 commit
  25. 15 Nov, 2019 2 commits
  26. 06 Nov, 2019 1 commit
  27. 31 Oct, 2019 1 commit
  28. 28 Oct, 2019 1 commit
  29. 26 Oct, 2019 1 commit
    • raghuramank100's avatar
      Quantizable resnet and mobilenet models (#1471) · b4cb5765
      raghuramank100 authored
      * add quantized models
      
      * Modify mobilenet.py documentation and clean up comments
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Move fuse_model method to QuantizableInvertedResidual and clean up args documentation
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Restore relu settings to default in resnet.py
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix missing return in forward
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix missing return in forwards
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Change pretrained -> pretrained_float_models
      Replace InvertedResidual with block
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update tests to follow similar structure to test_models.py, allowing for modular testing
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Replace forward method with simple function assignment
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix error in arguments for resnet18
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * pretrained_float_model argument missing for mobilenet
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * reference script for quantization aware training and post training quantization
      
      * reference script for quantization aware training and post training quantization
      
      * set pretrained_float_model as False and explicitly provide float model
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Address review comments:
      1. Replace forward with _forward
      2. Use pretrained models in reference train/eval script
      3. Modify test to skip if fbgemm is not supported
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint errors.
      Use _forward for common code between float and quantized models
      Clean up linting for reference train scripts
      Test over all quantizable models
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update default values for args in quantization/train.py
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update models to conform to new API with quantize argument
      Remove apex in training script, add post training quant as an option
      Add support for separate calibration data set.
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix minor errors in train_quantization.py
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Remove duplicate file
      
      * Bugfix
      
      * Minor improvements on the models
      
      * Expose print_freq to evaluate
      
      * Minor improvements on train_quantization.py
      
      * Ensure that quantized models are created and run on the specified backends
      Fix errors in test only mode
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Add model urls
      
      * Fix errors in quantized model tests.
      Speedup creation of random quantized model by removing histogram observers
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Move setting qengine prior to convert.
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint error
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Add readme.md
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Readme.md
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint
      b4cb5765
  30. 18 Oct, 2019 1 commit