- 17 Sep, 2019 1 commit
-
-
Lara Haidar authored
* Support Exporting GeneralizedRCNNTransform * refactor code to address comments * update tests * address comments * revert min_size to test CI * re-revert min_size
-
- 12 Jul, 2019 1 commit
-
-
buoyancy99 authored
-
- 04 Jul, 2019 1 commit
-
-
buoyancy99 authored
* fix transform for rcnns so original images are unchanged * transform does not change input list anymore transform does not change input list anymore. Improve code according to reviewer comment * transform for maskrcnn no longer modify input list transform for maskrcnn no longer modify input list. improve code according to comment * transform for maskrcnn no longer modifies input list
-
- 25 May, 2019 1 commit
-
-
7d authored
Consider the difference of the division operator between Python 2.x and Python 3.x.
-
- 21 May, 2019 1 commit
-
-
Francisco Massa authored
This makes it consistent with the other models, which returns nouns in plurial
-
- 20 May, 2019 2 commits
-
-
Francisco Massa authored
* Add more documentation for the ops * Add documentation for Faster R-CNN * Add documentation for Mask R-CNN and Keypoint R-CNN * Improve doc for RPN * Add basic doc for GeneralizedRCNNTransform * Lint fixes
-
Francisco Massa authored
-
- 19 May, 2019 1 commit
-
-
Francisco Massa authored
* [Remove] Use stride in 1x1 in resnet This is temporary * Move files to torchvision Inference works * Now seems to give same results Was using the wrong number of total iterations in the end... * Distributed evaluation seems to work * Factor out transforms into its own file * Enabling horizontal flips * MultiStepLR and preparing for launches * Add warmup * Clip gt boxes to images Seems to be crucial to avoid divergence. Also reduces the losses over different processes for better logging * Single-GPU batch-size 1 of CocoEvaluator works * Multi-GPU CocoEvaluator works Gives the exact same results as the other one, and also supports batch size > 1 * Silence prints from pycocotools * Commenting unneeded code for run * Fixes * Improvements and cleanups * Remove scales from Pooler It was not a free parameter, and depended only on the feature map dimensions * Cleanups * More cleanups * Add misc ops and totally remove maskrcnn_benchmark * nit * Move Pooler to ops * Make FPN slightly more generic * Minor improvements or FPN * Move FPN to ops * Move functions to utils * Lint fixes * More lint * Minor cleanups * Add FasterRCNN * Remove modifications to resnet * Fixes for Python2 * More lint fixes * Add aspect ratio grouping * Move functions around * Make evaluation use all images for mAP, even those without annotations * Bugfix with DDP introduced in last commit * [Check] Remove category mapping * Lint * Make GroupedBatchSampler prioritize largest clusters in the end of iteration * Bugfix for selecting the iou_types during evaluation Also switch to using the torchvision normalization now on, given that we are using torchvision base models * More lint * Add barrier after init_process_group Better be safe than sorry * Make evaluation only use one CPU thread per process When doing multi-gpu evaluation, paste_masks_in_image is multithreaded and throttles evaluation altogether. Also change default for aspect ratio group to match Detectron * Fix bug in GroupedBatchSampler After the first epoch, the number of batch elements could be larger than batch_size, because they got accumulated from the previous iteration. Fix this and also rename some variables for more clarity * Start adding KeypointRCNN Currently runs and perform inference, need to do full training * Remove use of opencv in keypoint inference PyTorch 1.1 adds support for bicubic interpolation which matches opencv (except for empty boxes, where one of the dimensions is 1, but that's fine) * Remove Masker Towards having mask postprocessing done inside the model * Bugfixes in previous change plus cleanups * Preparing to run keypoint training * Zero initialize bias for mask heads * Minor improvements on print * Towards moving resize to model Also remove class mapping specific to COCO * Remove zero init in bias for mask head Checking if it decreased accuracy * [CHECK] See if this change brings back expected accuracy * Cleanups on model and training script * Remove BatchCollator * Some cleanups in coco_eval * Move postprocess to transform * Revert back scaling and start adding conversion to coco api The scaling didn't seem to matter * Use decorator instead of context manager in evaluate * Move training and evaluation functions to a separate file Also adds support for obtaining a coco API object from our dataset * Remove unused code * Update location of lr_scheduler Its behavior has changed in PyTorch 1.1 * Remove debug code * Typo * Bugfix * Move image normalization to model * Remove legacy tensor constructors Also move away from Int and instead use int64 * Bugfix in MultiscaleRoiAlign * Move transforms to its own file * Add missing file * Lint * More lint * Add some basic test for detection models * More lint
-