Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
9bacd5c2
Unverified
Commit
9bacd5c2
authored
May 20, 2019
by
Francisco Massa
Committed by
GitHub
May 20, 2019
Browse files
Add multiscale training for Keypoint R-CNN (#922)
parent
cf401a70
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
16 additions
and
6 deletions
+16
-6
torchvision/models/detection/keypoint_rcnn.py
torchvision/models/detection/keypoint_rcnn.py
+3
-1
torchvision/models/detection/transform.py
torchvision/models/detection/transform.py
+13
-5
No files found.
torchvision/models/detection/keypoint_rcnn.py
View file @
9bacd5c2
...
@@ -16,7 +16,7 @@ __all__ = [
...
@@ -16,7 +16,7 @@ __all__ = [
class
KeypointRCNN
(
FasterRCNN
):
class
KeypointRCNN
(
FasterRCNN
):
def
__init__
(
self
,
backbone
,
num_classes
=
None
,
def
__init__
(
self
,
backbone
,
num_classes
=
None
,
# transform parameters
# transform parameters
min_size
=
800
,
max_size
=
1333
,
min_size
=
None
,
max_size
=
1333
,
image_mean
=
None
,
image_std
=
None
,
image_mean
=
None
,
image_std
=
None
,
# RPN parameters
# RPN parameters
rpn_anchor_generator
=
None
,
rpn_head
=
None
,
rpn_anchor_generator
=
None
,
rpn_head
=
None
,
...
@@ -37,6 +37,8 @@ class KeypointRCNN(FasterRCNN):
...
@@ -37,6 +37,8 @@ class KeypointRCNN(FasterRCNN):
num_keypoints
=
17
):
num_keypoints
=
17
):
assert
isinstance
(
keypoint_roi_pool
,
(
MultiScaleRoIAlign
,
type
(
None
)))
assert
isinstance
(
keypoint_roi_pool
,
(
MultiScaleRoIAlign
,
type
(
None
)))
if
min_size
is
None
:
min_size
=
(
640
,
672
,
704
,
736
,
768
,
800
)
if
num_classes
is
not
None
:
if
num_classes
is
not
None
:
if
keypoint_predictor
is
not
None
:
if
keypoint_predictor
is
not
None
:
...
...
torchvision/models/detection/transform.py
View file @
9bacd5c2
import
random
import
math
import
math
import
torch
import
torch
from
torch
import
nn
from
torch
import
nn
...
@@ -10,8 +11,10 @@ from .roi_heads import paste_masks_in_image
...
@@ -10,8 +11,10 @@ from .roi_heads import paste_masks_in_image
class
GeneralizedRCNNTransform
(
nn
.
Module
):
class
GeneralizedRCNNTransform
(
nn
.
Module
):
def
__init__
(
self
,
min_size
,
max_size
,
image_mean
,
image_std
):
def
__init__
(
self
,
min_size
,
max_size
,
image_mean
,
image_std
):
super
(
GeneralizedRCNNTransform
,
self
).
__init__
()
super
(
GeneralizedRCNNTransform
,
self
).
__init__
()
self
.
min_size
=
float
(
min_size
)
if
not
isinstance
(
min_size
,
(
list
,
tuple
)):
self
.
max_size
=
float
(
max_size
)
min_size
=
(
min_size
,)
self
.
min_size
=
min_size
self
.
max_size
=
max_size
self
.
image_mean
=
image_mean
self
.
image_mean
=
image_mean
self
.
image_std
=
image_std
self
.
image_std
=
image_std
...
@@ -40,9 +43,14 @@ class GeneralizedRCNNTransform(nn.Module):
...
@@ -40,9 +43,14 @@ class GeneralizedRCNNTransform(nn.Module):
def
resize
(
self
,
image
,
target
):
def
resize
(
self
,
image
,
target
):
h
,
w
=
image
.
shape
[
-
2
:]
h
,
w
=
image
.
shape
[
-
2
:]
min_size
=
min
(
image
.
shape
[
-
2
:])
min_size
=
float
(
min
(
image
.
shape
[
-
2
:]))
max_size
=
max
(
image
.
shape
[
-
2
:])
max_size
=
float
(
max
(
image
.
shape
[
-
2
:]))
scale_factor
=
self
.
min_size
/
min_size
if
self
.
training
:
size
=
random
.
choice
(
self
.
min_size
)
else
:
# FIXME assume for now that testing uses the largest scale
size
=
self
.
min_size
[
-
1
]
scale_factor
=
size
/
min_size
if
max_size
*
scale_factor
>
self
.
max_size
:
if
max_size
*
scale_factor
>
self
.
max_size
:
scale_factor
=
self
.
max_size
/
max_size
scale_factor
=
self
.
max_size
/
max_size
image
=
torch
.
nn
.
functional
.
interpolate
(
image
=
torch
.
nn
.
functional
.
interpolate
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment