1. 18 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Detection (#3253) · bf211dac
      Vasilis Vryniotis authored
      * Minor refactoring of a private method to make it reusuable.
      
      * Adding a FasterRCNN + MobileNetV3 with & w/o FPN models.
      
      * Reducing Resolution to 320-640 and anchor sizes to 16-256.
      
      * Increase anchor sizes.
      
      * Adding rpn score threshold param on the train script.
      
      * Adding trainable_backbone_layers param on the train script.
      
      * Adding rpn_score_thresh param directly in fasterrcnn_mobilenet_v3_large_fpn.
      
      * Remove fasterrcnn_mobilenet_v3_large prototype and update expected file.
      
      * Update documentation and adding weights.
      
      * Use buildin Identity.
      
      * Fix spelling.
      bf211dac
  2. 14 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Classification (#3252) · 7bf6e7b1
      Vasilis Vryniotis authored
      * Add MobileNetV3 Architecture in TorchVision (#3182)
      
      * Adding implementation of network architecture
      
      * Adding rmsprop support on the train.py
      
      * Adding auto-augment and random-erase in the training scripts.
      
      * Adding support for reduced tail on MobileNetV3.
      
      * Tagging blocks with comments.
      
      * Adding documentation, pre-trained model URL and a minor refactoring.
      
      * Handling better untrained supported models.
      7bf6e7b1
  3. 13 Oct, 2020 1 commit
    • Francisco Massa's avatar
      RetinaNet object detection (take 2) (#2784) · 5bb81c8e
      Francisco Massa authored
      
      
      * Add rough implementation of RetinaNet.
      
      * Move AnchorGenerator to a seperate file.
      
      * Move box similarity to Matcher.
      
      * Expose extra blocks in FPN.
      
      * Expose retinanet in __init__.py.
      
      * Use P6 and P7 in FPN for retinanet.
      
      * Use parameters from retinanet for anchor generation.
      
      * General fixes for retinanet model.
      
      * Implement loss for retinanet heads.
      
      * Output reshaped outputs from retinanet heads.
      
      * Add postprocessing of detections.
      
      * Small fixes.
      
      * Remove unused argument.
      
      * Remove python2 invocation of super.
      
      * Add postprocessing for additional outputs.
      
      * Add missing import of ImageList.
      
      * Remove redundant import.
      
      * Simplify class correction.
      
      * Fix pylint warnings.
      
      * Remove the label adjustment for background class.
      
      * Set default score threshold to 0.05.
      
      * Add weight initialization for regression layer.
      
      * Allow training on images with no annotations.
      
      * Use smooth_l1_loss with beta value.
      
      * Add more typehints for TorchScript conversions.
      
      * Fix linting issues.
      
      * Fix type hints in postprocess_detections.
      
      * Fix type annotations for TorchScript.
      
      * Fix inconsistency with matched_idxs.
      
      * Add retinanet model test.
      
      * Add missing JIT annotations.
      
      * Remove redundant model construction
      
      Make tests pass
      
      * Fix bugs during training on newer PyTorch and unused params in DDP
      
      Needs cleanup and to add back support for images with no annotations
      
      * Cleanup resnet_fpn_backbone
      
      * Use L1 loss for regression
      
      Gives 1mAP improvement over smooth l1
      
      * Disable support for images with no annotations
      
      Need to fix distributed first
      
      * Fix retinanet tests
      
      Need to deduplicate those box checks
      
      * Fix Lint
      
      * Add pretrained model
      
      * Add training info for retinanet
      Co-authored-by: default avatarHans Gaiser <hansg91@gmail.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robovalley.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robohouse.com>
      5bb81c8e
  4. 09 Sep, 2020 1 commit
  5. 10 Apr, 2020 1 commit
  6. 31 Mar, 2020 1 commit
  7. 12 Mar, 2020 1 commit
  8. 06 Aug, 2019 1 commit
  9. 26 Jun, 2019 1 commit
    • Sergey Zagoruyko's avatar
      Add pretrained Wide ResNet (#912) · 2b6da28c
      Sergey Zagoruyko authored
      * add wide resnet
      
      * add docstring for wide resnet
      
      * update WRN-50-2 model
      
      * add docs
      
      * extend WRN docstring
      
      * use pytorch storage for WRN
      
      * fix rebase
      
      * fix typo in docs
      2b6da28c
  10. 24 Jun, 2019 1 commit
    • Dmitry Belenko's avatar
      Implementation of the MNASNet family of models (#829) · 69b28578
      Dmitry Belenko authored
      * Add initial mnasnet impl
      
      * Remove all type hints, comply with PyTorch overall style
      
      * Expose models
      
      * Remove avgpool from features() and add separately
      
      * Fix python3-only stuff, replace subclasses with functions
      
      * fix __all__
      
      * Fix typo
      
      * Remove conditional dropout
      
      * Make dropout functional
      
      * Addressing @fmassa's feedback, round 1
      
      * Replaced adaptive avgpool with mean on H and W to prevent collapsing the batch dimension
      
      * Partially address feedback
      
      * YAPF
      
      * Removed redundant class vars
      
      * Update urls to releases
      
      * Add information to models.rst
      
      * Replace init with kaiming_normal_ in fan-out mode
      
      * Use load_state_dict_from_url
      69b28578
  11. 05 Jun, 2019 1 commit
  12. 03 Jun, 2019 1 commit
  13. 21 May, 2019 3 commits
  14. 19 May, 2019 1 commit
  15. 30 Apr, 2019 1 commit
    • Bar's avatar
      Add ShuffleNet v2 (#849) · 7a4845a9
      Bar authored
      * Add ShuffleNet v2
      
      Added 4 configurations: x0.5, x1, x1.5, x2
      Add 2 pretrained models: x0.5, x1
      
      * fix lint
      
      * Change globalpool to torch.mean() call
      7a4845a9
  16. 07 Mar, 2019 1 commit
    • Michael Kösel's avatar
      Add GoogLeNet (Inception v1) (#678) · a2093007
      Michael Kösel authored
      * Add GoogLeNet (Inception v1)
      
      * Fix missing padding
      
      * Add missing ReLu to aux classifier
      
      * Add Batch normalized version of GoogLeNet
      
      * Use ceil_mode instead of padding and initialize weights using "xavier"
      
      * Match BVLC GoogLeNet zero initialization of classifier
      
      * Small cleanup
      
      * use adaptive avg pool
      
      * adjust network to match TensorFlow
      
      * Update url of pre-trained model and add classification results on ImageNet
      
      * Bugfix that improves performance by 1 point
      a2093007
  17. 11 Oct, 2018 1 commit
  18. 06 Feb, 2018 1 commit
  19. 23 Oct, 2017 1 commit
  20. 13 Oct, 2017 1 commit
  21. 08 Oct, 2017 1 commit
  22. 07 Oct, 2017 2 commits