1. 10 Apr, 2020 1 commit
  2. 31 Mar, 2020 1 commit
  3. 30 Mar, 2020 1 commit
  4. 20 Mar, 2020 1 commit
  5. 13 Mar, 2020 1 commit
  6. 10 Mar, 2020 1 commit
  7. 10 Feb, 2020 1 commit
  8. 19 Dec, 2019 4 commits
  9. 26 Nov, 2019 2 commits
  10. 25 Nov, 2019 2 commits
  11. 04 Nov, 2019 2 commits
  12. 30 Oct, 2019 1 commit
  13. 29 Oct, 2019 1 commit
  14. 26 Oct, 2019 2 commits
    • raghuramank100's avatar
      Quantizable resnet and mobilenet models (#1471) · b4cb5765
      raghuramank100 authored
      * add quantized models
      
      * Modify mobilenet.py documentation and clean up comments
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Move fuse_model method to QuantizableInvertedResidual and clean up args documentation
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Restore relu settings to default in resnet.py
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix missing return in forward
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix missing return in forwards
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Change pretrained -> pretrained_float_models
      Replace InvertedResidual with block
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update tests to follow similar structure to test_models.py, allowing for modular testing
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Replace forward method with simple function assignment
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix error in arguments for resnet18
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * pretrained_float_model argument missing for mobilenet
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * reference script for quantization aware training and post training quantization
      
      * reference script for quantization aware training and post training quantization
      
      * set pretrained_float_model as False and explicitly provide float model
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Address review comments:
      1. Replace forward with _forward
      2. Use pretrained models in reference train/eval script
      3. Modify test to skip if fbgemm is not supported
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint errors.
      Use _forward for common code between float and quantized models
      Clean up linting for reference train scripts
      Test over all quantizable models
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update default values for args in quantization/train.py
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update models to conform to new API with quantize argument
      Remove apex in training script, add post training quant as an option
      Add support for separate calibration data set.
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix minor errors in train_quantization.py
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Remove duplicate file
      
      * Bugfix
      
      * Minor improvements on the models
      
      * Expose print_freq to evaluate
      
      * Minor improvements on train_quantization.py
      
      * Ensure that quantized models are created and run on the specified backends
      Fix errors in test only mode
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Add model urls
      
      * Fix errors in quantized model tests.
      Speedup creation of random quantized model by removing histogram observers
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Move setting qengine prior to convert.
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint error
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Add readme.md
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Readme.md
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint
      b4cb5765
    • Francisco Massa's avatar
      [WIP] Add commands for model training (#1203) · 9e27356f
      Francisco Massa authored
      * Initial version of README for classification reference scripts
      
      * More context
      9e27356f
  15. 04 Oct, 2019 2 commits
  16. 29 Aug, 2019 1 commit
  17. 12 Aug, 2019 1 commit
  18. 05 Aug, 2019 1 commit
  19. 04 Aug, 2019 1 commit
  20. 31 Jul, 2019 3 commits
  21. 19 Jul, 2019 1 commit
    • Vinh Nguyen's avatar
      Fix apex distributed training (#1124) · c187c2b1
      Vinh Nguyen authored
      * adding mixed precision training with Apex
      
      * fix APEX default optimization level
      
      * adding python version check for apex
      
      * fix LINT errors and raise exceptions if apex not available
      
      * fixing apex distributed training
      
      * fix throughput calculation: include forward pass
      
      * remove torch.cuda.set_device(args.gpu) as it's already called in init_distributed_mode
      
      * fix linter: new line
      
      * move Apex initialization code back to the beginning of main
      
      * move apex initialization to before lr_scheduler - for peace of mind. Though, doing apex initialization after lr_scheduler seems to work fine as well
      c187c2b1
  22. 17 Jul, 2019 1 commit
    • Daksh Jotwani's avatar
      Similarity learning reference code (#1101) · bbd363ca
      Daksh Jotwani authored
      * Add loss, sampler, and train script
      
      * Fix train script
      
      * Add argparse
      
      * Fix lint
      
      * Change f strings to .format()
      
      * Remove unused imports
      
      * Change TripletMarginLoss to extend nn.Module
      
      * Load eye uint8 tensors directly on device
      
      * Refactor model.py to backbone=None
      
      * Add docstring for PKSampler
      
      * Refactor evaluate() to take loader as arg instead
      
      * Change eval method to cat embeddings all at once
      
      * Add dataset comments
      
      * Add README.md
      
      * Add tests for sampler
      
      * Refactor threshold finder to helper method
      
      * Refactor targets comment
      
      * Fix lint
      
      * Rename embedding to similarity (More consistent with existing literature)
      bbd363ca
  23. 12 Jul, 2019 2 commits
  24. 14 Jun, 2019 2 commits
  25. 06 Jun, 2019 1 commit
  26. 21 May, 2019 3 commits