1. 26 Sep, 2022 1 commit
  2. 23 Sep, 2022 1 commit
    • Ponku's avatar
      MaxVit model (#6342) · 6b1646ca
      Ponku authored
      
      
      * Added maxvit architecture and tests
      
      * rebased + addresed comments
      
      * Revert "rebased + addresed comments"
      
      This reverts commit c5b28398cd48d2f3403c7c8eeefbaba9df05fcfe.
      
      * Re-added model changes after revert
      
      * aligned with partial original implementation
      
      * removed submitit script fixed lint
      
      * mypy fix for too many arguments
      
      * updated old tests
      
      * removed per batch lr scheduler and seed setting
      
      * removed ontap
      
      * added docs, validated weights
      
      * fixed test expect, moved shape assertions in the begging for torch.fx compatibility
      
      * mypy fix
      
      * lint fix
      
      * added legacy interface
      
      * added weight link
      
      * updated docs
      
      * Update references/classification/train.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/maxvit.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * adressed comments
      
      * update ra_maginuted and augmix_severity default values
      
      * adressed some comments
      
      * remove input_channels parameter
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      6b1646ca
  3. 10 Aug, 2022 1 commit
    • Local State's avatar
      Add SwinV2 (#6246) · 5521e9d0
      Local State authored
      
      
      * init submit
      
      * fix typo
      
      * support ufmt and mypy
      
      * fix 2 unittest errors
      
      * fix ufmt issue
      
      * Apply suggestions from code review
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * unify codes
      
      * fix meshgrid indexing
      
      * fix a bug
      
      * fix type check
      
      * add type_annotation
      
      * add slow model
      
      * fix device issue
      
      * fix ufmt issue
      
      * add expect pickle file
      
      * fix jit script issue
      
      * fix type check
      
      * keep consistent argument order
      
      * add support for pretrained_window_size
      
      * avoid code duplication
      
      * a better code reuse
      
      * update window_size argument
      
      * make permute and flatten operations modular
      
      * add PatchMergingV2
      
      * modify expect.pkl
      
      * use None as default argument value
      
      * fix type check
      
      * fix indent
      
      * fix window_size (temporarily)
      
      * remove "v2_" related prefix and add v2 builder
      
      * remove v2 builder
      
      * keep default value consistent with official repo
      
      * deprecate dropout
      
      * deprecate pretrained_window_size
      
      * fix dynamic padding edge case
      
      * remove unused imports
      
      * remove doc modification
      
      * Revert "deprecate dropout"
      
      This reverts commit 8a13f932815ae25655c07430d52929f86b1ca479.
      
      * Revert "fix dynamic padding edge case"
      
      This reverts commit 1c7579cb1bd7bf2f0f94907f39bee6ed707a97a8.
      
      * remove unused kwargs
      
      * add downsample docs
      
      * revert block default value
      
      * revert argument order change
      
      * explicitly specify start_dim
      
      * add small and base variants
      
      * add expect files and slow_models
      
      * Add model weights and documentation for swin v2
      
      * fix lint
      
      * fix end of files line
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      5521e9d0
  4. 19 May, 2022 1 commit
  5. 28 Apr, 2022 1 commit
    • YosuaMichael's avatar
      Add shufflenetv2 1.5 and 2.0 weights (#5906) · 5fc36b4f
      YosuaMichael authored
      * Add shufflenetv2 1.5 and 2.0 weights
      
      * Update recipe
      
      * Add to docs
      
      * Use resize_size=232 for eval and update the result
      
      * Add quantized shufflenetv2 large
      
      * Update docs and readme
      
      * Format with ufmt
      
      * Add to hubconf.py
      
      * Update readme for classification reference
      
      * Fix reference classification readme
      
      * Fix typo on readme
      
      * Update reference/classification/readme
      5fc36b4f
  6. 27 Apr, 2022 1 commit
    • Hu Ye's avatar
      Adding Swin Transformer architecture (#5491) · e288f6ca
      Hu Ye authored
      
      
      * add swin transformer
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * fix lint
      
      * fix lint
      
      * refactor code
      
      * add swin_transformer
      
      * Update swin_transformer.py
      
      * fix bug
      
      * refactor code
      
      * fix lint
      
      * update init_weights
      
      * move shift_window into attention
      
      * refactor code
      
      * fix bug
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * fix lint
      
      * add patch_merge
      
      * fix bug
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * refactor code
      
      * Update swin_transformer.py
      
      * refactor code
      
      * fix lint
      
      * refactor code
      
      * add swin_tiny
      
      * add swin_tiny.pkl
      
      * fix lint
      
      * Delete ModelTester.test_swin_tiny_expect.pkl
      
      * add swin_tiny
      
      * add
      
      * add Optional to bias
      
      * update init weights
      
      * update init_weights and add no weight decay
      
      * add no weight decay
      
      * add set_weight_decay
      
      * add set_weight_decay
      
      * fix lint
      
      * fix lint
      
      * add lr_cos_min
      
      * add other swin models
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * refactor doc
      
      * Update utils.py
      
      * Update train.py
      
      * Update train.py
      
      * Update swin_transformer.py
      
      * update model builder
      
      * fix lint
      
      * add
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * Update torchvision/models/swin_transformer.py
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * update other model
      
      * simplify the model name just like ViT
      
      * add lr_cos_min
      
      * fix lint
      
      * fix lint
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Update swin_transformer.py
      
      * Delete ModelTester.test_swin_tiny_expect.pkl
      
      * add swin_t
      
      * refactor code
      
      * Update train.py
      
      * add swin_s
      
      * ignore a error of mypy
      
      * Update swin_transformer.py
      
      * fix lint
      
      * add swin_b
      
      * add swin_l
      
      * refactor code
      
      * Update train.py
      
      * move relative_position_bias to __init__
      
      * fix formatting
      
      * Revert "fix formatting"
      
      This reverts commit 41faba232668f7ac4273a0cf632c0d0130c7ce9c.
      
      * Revert "move relative_position_bias to __init__"
      
      This reverts commit f0615440bf18617dc0e5dc4839bd5ed27e5ed010.
      
      * refactor code
      
      * Remove deprecated meta-data from `_COMMON_META`
      
      * fix linter
      
      * add pretrained weights for swin_t
      
      * fix format
      
      * apply ufmt
      
      * add documentation
      
      * update references README
      
      * adding new style docs
      
      * update pre-trained weights values
      
      * remove other variants
      
      * fix typo
      
      * Remove expect for the variants not yet supported
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      Co-authored-by: default avatarJoao Gomes <jdsgomes@fb.com>
      e288f6ca
  7. 22 Mar, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Port Multi-weight support from prototype to main (#5618) · 11bd2eaa
      Vasilis Vryniotis authored
      
      
      * Moving basefiles outside of prototype and porting Alexnet, ConvNext, Densenet and EfficientNet.
      
      * Porting googlenet
      
      * Porting inception
      
      * Porting mnasnet
      
      * Porting mobilenetv2
      
      * Porting mobilenetv3
      
      * Porting regnet
      
      * Porting resnet
      
      * Porting shufflenetv2
      
      * Porting squeezenet
      
      * Porting vgg
      
      * Porting vit
      
      * Fix docstrings
      
      * Fixing imports
      
      * Adding missing import
      
      * Fix mobilenet imports
      
      * Fix tests
      
      * Fix prototype tests
      
      * Exclude get_weight from models on test
      
      * Fix init files
      
      * Porting googlenet
      
      * Porting inception
      
      * porting mobilenetv2
      
      * porting mobilenetv3
      
      * porting resnet
      
      * porting shufflenetv2
      
      * Fix test and linter
      
      * Fixing docs.
      
      * Porting Detection models (#5617)
      
      * fix inits
      
      * fix docs
      
      * Port faster_rcnn
      
      * Port fcos
      
      * Port keypoint_rcnn
      
      * Port mask_rcnn
      
      * Port retinanet
      
      * Port ssd
      
      * Port ssdlite
      
      * Fix linter
      
      * Fixing tests
      
      * Fixing tests
      
      * Fixing vgg test
      
      * Porting Optical Flow, Segmentation, Video models (#5619)
      
      * Porting raft
      
      * Porting video resnet
      
      * Porting deeplabv3
      
      * Porting fcn and lraspp
      
      * Fixing the tests and linter
      
      * Porting docs, examples, tutorials and galleries (#5620)
      
      * Fix examples, tutorials and gallery
      
      * Update gallery/plot_optical_flow.py
      Co-authored-by: default avatarNicolas Hug <contact@nicolas-hug.com>
      
      * Fix import
      
      * Revert hardcoded normalization
      
      * fix uncommitted changes
      
      * Fix bug
      
      * Fix more bugs
      
      * Making resize optional for segmentation
      
      * Fixing preset
      
      * Fix mypy
      
      * Fixing documentation strings
      
      * Fix flake8
      
      * minor refactoring
      Co-authored-by: default avatarNicolas Hug <contact@nicolas-hug.com>
      
      * Resolve conflict
      
      * Porting model tests (#5622)
      
      * Porting tests
      
      * Remove unnecessary variable
      
      * Fix linter
      
      * Move prototype to extended tests
      
      * Fix download models job
      
      * Update CI on Multiweight branch to use the new weight download approach (#5628)
      
      * port Pad to prototype transforms (#5621)
      
      * port Pad to prototype transforms
      
      * use literal
      
      * Bump up LibTorchvision version number for Podspec to release Cocoapods (#5624)
      Co-authored-by: default avatarAnton Thomma <anton@pri.co.nz>
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      
      * pre-download model weights in CI docs build (#5625)
      
      * pre-download model weights in CI docs build
      
      * move changes into template
      
      * change docs image
      
      * Regenerated config.yml
      Co-authored-by: default avatarPhilip Meier <github.pmeier@posteo.de>
      Co-authored-by: default avatarAnton Thomma <11010310+thommaa@users.noreply.github.com>
      Co-authored-by: default avatarAnton Thomma <anton@pri.co.nz>
      
      * Porting reference scripts and updating presets (#5629)
      
      * Making _preset.py classes
      
      * Remove support of targets on presets.
      
      * Rewriting the video preset
      
      * Adding tests to check that the bundled transforms are JIT scriptable
      
      * Rename all presets from *Eval to *Inference
      
      * Minor refactoring
      
      * Remove --prototype and --pretrained from reference scripts
      
      * remove  pretained_backbone refs
      
      * Corrections and simplifications
      
      * Fixing bug
      
      * Fixing linter
      
      * Fix flake8
      
      * restore documentation example
      
      * minor fixes
      
      * fix optical flow missing param
      
      * Fixing commands
      
      * Adding weights_backbone support in detection and segmentation
      
      * Updating the commands for InceptionV3
      
      * Setting `weights_backbone` to its fully BC value (#5653)
      
      * Replace default `weights_backbone=None` with its BC values.
      
      * Fixing tests
      
      * Fix linter
      
      * Update docs.
      
      * Update preprocessing on reference scripts.
      
      * Change qat/ptq to their full values.
      
      * Refactoring preprocessing
      
      * Fix video preset
      
      * No initialization on VGG if pretrained
      
      * Fix warning messages for backbone utils.
      
      * Adding star to all preset constructors.
      
      * Fix mypy.
      Co-authored-by: default avatarNicolas Hug <contact@nicolas-hug.com>
      Co-authored-by: default avatarPhilip Meier <github.pmeier@posteo.de>
      Co-authored-by: default avatarAnton Thomma <11010310+thommaa@users.noreply.github.com>
      Co-authored-by: default avatarAnton Thomma <anton@pri.co.nz>
      11bd2eaa
  8. 02 Mar, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Adding EfficientNetV2 architecture (#5450) · e6d82f7d
      Vasilis Vryniotis authored
      * Extend the EfficientNet class to support v1 and v2.
      
      * Refactor config/builder methods and add prototype builders
      
      * Refactoring weight info.
      
      * Update dropouts based on TF config ref
      
      * Update BN eps on TF base_config
      
      * Use Conv2dNormActivation.
      
      * Adding pre-trained weights for EfficientNetV2-s
      
      * Add Medium and Large weights
      
      * Update stats with single batch run.
      
      * Add accuracies in the docs.
      e6d82f7d
  9. 01 Feb, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Adding more ConvNeXt variants + Speed optimizations (#5253) · 82929ae1
      Vasilis Vryniotis authored
      * Refactor model builder
      
      * Add 3 more convnext variants.
      
      * Adding weights for convnext_small.
      
      * Fix minor bug.
      
      * Fix number of parameters for small model.
      
      * Adding weights for the base variant.
      
      * Adding weights for the large variant.
      
      * Simplify LayerNorm2d implementation.
      
      * Optimize speed of CNBlock.
      
      * Repackage weights.
      82929ae1
  10. 20 Jan, 2022 1 commit
    • Vasilis Vryniotis's avatar
      Adding ConvNeXt architecture in prototype (#5197) · afda28ac
      Vasilis Vryniotis authored
      * Adding CNBlock and skeleton architecture
      
      * Completed implementation.
      
      * Adding model in prototypes.
      
      * Add test and minor refactor for JIT.
      
      * Fix mypy.
      
      * Fixing naming conventions.
      
      * Fixing tests.
      
      * Fix stochastic depth percentages.
      
      * Adding stochastic depth to tiny variant.
      
      * Minor refactoring and adding comments.
      
      * Adding weights.
      
      * Update default weights.
      
      * Fix transforms issue
      
      * Move convnext to prototype.
      
      * linter fix
      
      * fix docs
      
      * Addressing code review comments.
      afda28ac
  11. 05 Jan, 2022 1 commit
    • Yiwen Song's avatar
      Adding pretrained ViT weights (#5085) · df628c49
      Yiwen Song authored
      * Adding pretrained ViT weights
      
      * Adding recipe as part of meta
      
      * update checkpoints using best ema results
      
      * Fix handle_legacy_interface and update recipe url
      
      * Update README
      df628c49
  12. 04 Jan, 2022 1 commit
  13. 10 Dec, 2021 1 commit
  14. 22 Nov, 2021 1 commit
  15. 04 Nov, 2021 1 commit
  16. 03 Nov, 2021 1 commit
  17. 02 Nov, 2021 2 commits
  18. 01 Nov, 2021 1 commit
  19. 22 Oct, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Additional SOTA ingredients on Classification Recipe (#4493) · b280c318
      Vasilis Vryniotis authored
      * Update EMA every X iters.
      
      * Adding AdamW optimizer.
      
      * Adjusting EMA decay scheme.
      
      * Support custom weight decay for Normalization layers.
      
      * Fix identation bug.
      
      * Change EMA adjustment.
      
      * Quality of life changes to faciliate testing
      
      * ufmt format
      
      * Fixing imports.
      
      * Adding FixRes improvement.
      
      * Support EMA in store_model_weights.
      
      * Adding interpolation values.
      
      * Change train_crop_size.
      
      * Add interpolation option.
      
      * Removing hardcoded interpolation and sizes from the scripts.
      
      * Fixing linter.
      
      * Incorporating feedback from code review.
      b280c318
  20. 08 Oct, 2021 1 commit
  21. 29 Sep, 2021 1 commit
    • Kai Zhang's avatar
      Add RegNet Architecture in TorchVision (#4403) · 194a0846
      Kai Zhang authored
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * add expected test pkl files
      
      * allow custom activation in SqueezeExcitation
      
      * use ReLU as the default activation
      
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * reuse SqueezeExcitation from efficientnet
      
      * refactor RegNetParams into BlockParams
      
      * use nn.init, replace np with torch
      
      * update README
      
      * construct model with stem, block, classifier instances
      
      * Revert "construct model with stem, block, classifier instances"
      
      This reverts commit 850f5f3ed01a2a9b36fcbf8405afd6e41d2e58ef.
      
      * remove unused blocks
      
      * support scaled model
      
      * fuse into ConvBNActivation
      
      * make reset_parameters private
      
      * fix type errors
      
      * fix for unit test
      
      * add pretrained weights for 6 variant models, update docs
      194a0846
  22. 20 Sep, 2021 1 commit
  23. 13 Sep, 2021 1 commit
  24. 10 Sep, 2021 1 commit
  25. 26 Aug, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add EfficientNet Architecture in TorchVision (#4293) · 37a9ee5b
      Vasilis Vryniotis authored
      * Adding code skeleton
      
      * Adding MBConvConfig.
      
      * Extend SqueezeExcitation to support custom min_value and activation.
      
      * Implement MBConv.
      
      * Replace stochastic_depth with operator.
      
      * Adding the rest of the EfficientNet implementation
      
      * Update torchvision/models/efficientnet.py
      
      * Replacing 1st activation of SE with SiLU.
      
      * Adding efficientnet_b3.
      
      * Replace mobilenetv3 assets with custom.
      
      * Switch to standard sigmoid and reconfiguring BN.
      
      * Reconfiguration of efficientnet.
      
      * Add repr
      
      * Add weights.
      
      * Update weights.
      
      * Adding B5-B7 weights.
      
      * Update docs and hubconf.
      
      * Fix doc link.
      
      * Fix typo on comment.
      37a9ee5b
  26. 21 Jun, 2021 1 commit
  27. 09 Feb, 2021 1 commit
  28. 02 Feb, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add Quantizable MobilenetV3 architecture for Classification (#3323) · 8317295c
      Vasilis Vryniotis authored
      * Refactoring mobilenetv3 to make code reusable.
      
      * Adding quantizable MobileNetV3 architecture.
      
      * Fix bug on reference script.
      
      * Moving documentation of quantized models in the right place.
      
      * Update documentation.
      
      * Workaround for loading correct weights of quant model.
      
      * Update weight URL and readme.
      
      * Adding eval.
      8317295c
  29. 28 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Adding Preset Transforms in reference scripts (#3317) · 1703e4ca
      Vasilis Vryniotis authored
      * Adding presets in the classification reference scripts.
      
      * Adding presets in the object detection reference scripts.
      
      * Adding presets in the segmentation reference scripts.
      
      * Adding presets in the video classification reference scripts.
      
      * Moving flip at the end to align with image classification signature.
      1703e4ca
  30. 14 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Classification (#3252) · 7bf6e7b1
      Vasilis Vryniotis authored
      * Add MobileNetV3 Architecture in TorchVision (#3182)
      
      * Adding implementation of network architecture
      
      * Adding rmsprop support on the train.py
      
      * Adding auto-augment and random-erase in the training scripts.
      
      * Adding support for reduced tail on MobileNetV3.
      
      * Tagging blocks with comments.
      
      * Adding documentation, pre-trained model URL and a minor refactoring.
      
      * Handling better untrained supported models.
      7bf6e7b1
  31. 20 Mar, 2020 1 commit
  32. 13 Mar, 2020 1 commit
  33. 10 Mar, 2020 1 commit
  34. 04 Nov, 2019 1 commit
  35. 30 Oct, 2019 1 commit
  36. 26 Oct, 2019 2 commits
    • raghuramank100's avatar
      Quantizable resnet and mobilenet models (#1471) · b4cb5765
      raghuramank100 authored
      * add quantized models
      
      * Modify mobilenet.py documentation and clean up comments
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Move fuse_model method to QuantizableInvertedResidual and clean up args documentation
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Restore relu settings to default in resnet.py
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix missing return in forward
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix missing return in forwards
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Change pretrained -> pretrained_float_models
      Replace InvertedResidual with block
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update tests to follow similar structure to test_models.py, allowing for modular testing
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Replace forward method with simple function assignment
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix error in arguments for resnet18
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * pretrained_float_model argument missing for mobilenet
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * reference script for quantization aware training and post training quantization
      
      * reference script for quantization aware training and post training quantization
      
      * set pretrained_float_model as False and explicitly provide float model
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Address review comments:
      1. Replace forward with _forward
      2. Use pretrained models in reference train/eval script
      3. Modify test to skip if fbgemm is not supported
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint errors.
      Use _forward for common code between float and quantized models
      Clean up linting for reference train scripts
      Test over all quantizable models
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update default values for args in quantization/train.py
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Update models to conform to new API with quantize argument
      Remove apex in training script, add post training quant as an option
      Add support for separate calibration data set.
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix minor errors in train_quantization.py
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Remove duplicate file
      
      * Bugfix
      
      * Minor improvements on the models
      
      * Expose print_freq to evaluate
      
      * Minor improvements on train_quantization.py
      
      * Ensure that quantized models are created and run on the specified backends
      Fix errors in test only mode
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Add model urls
      
      * Fix errors in quantized model tests.
      Speedup creation of random quantized model by removing histogram observers
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Move setting qengine prior to convert.
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint error
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Add readme.md
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Readme.md
      
      Summary:
      
      Test Plan:
      
      Reviewers:
      
      Subscribers:
      
      Tasks:
      
      Tags:
      
      * Fix lint
      b4cb5765
    • Francisco Massa's avatar
      [WIP] Add commands for model training (#1203) · 9e27356f
      Francisco Massa authored
      * Initial version of README for classification reference scripts
      
      * More context
      9e27356f