1. 30 Mar, 2021 1 commit
  2. 20 Mar, 2021 1 commit
  3. 18 Mar, 2021 1 commit
  4. 16 Mar, 2021 1 commit
  5. 10 Mar, 2021 2 commits
  6. 08 Mar, 2021 1 commit
  7. 04 Mar, 2021 1 commit
  8. 03 Mar, 2021 1 commit
  9. 02 Mar, 2021 1 commit
  10. 26 Feb, 2021 1 commit
  11. 23 Feb, 2021 1 commit
  12. 15 Feb, 2021 1 commit
  13. 09 Feb, 2021 1 commit
  14. 04 Feb, 2021 1 commit
  15. 02 Feb, 2021 1 commit
  16. 28 Jan, 2021 1 commit
  17. 26 Jan, 2021 2 commits
  18. 20 Jan, 2021 1 commit
  19. 19 Jan, 2021 1 commit
  20. 07 Jan, 2021 1 commit
  21. 23 Dec, 2020 1 commit
    • Zhengyang Feng's avatar
      Transforms documentation clean-up (#3200) · 7b9d30eb
      Zhengyang Feng authored
      * Initial doc clean-up
      
      * Remove all private docs
      
      * Rename files
      
      * Highlight backend inconsistencies
      
      * Sequence and number
      
      * [Need checking] AutoAugment related doc change
      
      * Revert name changes
      7b9d30eb
  22. 15 Dec, 2020 2 commits
  23. 14 Dec, 2020 1 commit
    • Vasilis Vryniotis's avatar
      Implement all AutoAugment transforms + Policies (#3123) · 83171d6a
      Vasilis Vryniotis authored
      
      
      * Invert Transform (#3104)
      
      * Adding invert operator.
      
      * Make use of the _assert_channels().
      
      * Update upper bound value.
      
      * Remove private doc from invert, create or reuse generic testing methods to avoid duplication of code in the tests. (#3106)
      
      * Create posterize transformation and refactor common methods to assist reuse. (#3108)
      
      * Implement the solarize transform. (#3112)
      
      * Implement the adjust_sharpness transform (#3114)
      
      * Adding functional operator for sharpness.
      
      * Adding transforms for sharpness.
      
      * Handling tiny images and adding a test.
      
      * Implement the autocontrast transform. (#3117)
      
      * Implement the equalize transform (#3119)
      
      * Implement the equalize transform.
      
      * Turn off deterministic for histogram.
      
      * Fixing test. (#3126)
      
      * Force ratio to be float to avoid numeric overflows on blend. (#3127)
      
      * Separate the tests of Adjust Sharpness from ColorJitter. (#3128)
      
      * Add AutoAugment Policies and main Transform (#3142)
      
      * Separate the tests of Adjust Sharpness from ColorJitter.
      
      * Initial implementation, not-jitable.
      
      * AutoAugment passing JIT.
      
      * Adding tests/docs, changing formatting.
      
      * Update test.
      
      * Fix formats
      
      * Fix documentation and imports.
      
      * Apply changes from code review:
      - Move the transformations outside of AutoAugment on a separate method.
      - Renamed degenerate method for sharpness for better clarity.
      
      * Update torchvision/transforms/functional.py
      Co-authored-by: default avatarvfdev <vfdev.5@gmail.com>
      
      * Apply more changes from code review:
      - Add InterpolationMode parameter.
      - Move all declarations away from AutoAugment constructor and into the private method.
      
      * Update documentation.
      
      * Apply suggestions from code review
      Co-authored-by: default avatarFrancisco Massa <fvsmassa@gmail.com>
      
      * Apply changes from code review:
      - Refactor code to eliminate as any to() and clamp() as possible.
      - Reuse methods where possible.
      - Apply speed ups.
      
      * Replacing pad.
      Co-authored-by: default avatarvfdev <vfdev.5@gmail.com>
      Co-authored-by: default avatarFrancisco Massa <fvsmassa@gmail.com>
      83171d6a
  24. 04 Dec, 2020 2 commits
  25. 03 Dec, 2020 1 commit
  26. 02 Dec, 2020 2 commits
    • Vasilis Vryniotis's avatar
      Check num of channels on adjust_* transformations (#3069) · 7f1a05a3
      Vasilis Vryniotis authored
      * Fixing upperbound value on tests and documentation.
      
      * Limit the number of channels on adjust_* transoforms.
      7f1a05a3
    • Zhengyang Feng's avatar
      Fill color support for tensor affine transforms (#2904) · 21deb4d0
      Zhengyang Feng authored
      
      
      * Fill color support for tensor affine transforms
      
      * PEP fix
      
      * Docstring changes and float support
      
      * Docstring update for transforms and float type cast
      
      * Cast only for Tensor
      
      * Temporary patch for lack of Union type support, plus an extra unit test
      
      * More plausible bilinear filling for tensors
      
      * Keep things simple & New docstrings
      
      * Fix lint and other issues after merge
      
      * make it in one line
      
      * Docstring and some code modifications
      
      * More tests and corresponding changes for transoforms and docstring changes
      
      * Simplify test configs
      
      * Update test_functional_tensor.py
      
      * Update test_functional_tensor.py
      
      * Move assertions
      Co-authored-by: default avatarvfdev <vfdev.5@gmail.com>
      21deb4d0
  27. 30 Nov, 2020 1 commit
  28. 27 Nov, 2020 2 commits
  29. 20 Nov, 2020 1 commit
    • Alexey Demyanchuk's avatar
      Add explicit check for number of channels (#3013) · a51c49e4
      Alexey Demyanchuk authored
      
      
      * Add explicit check for number of channels
      
      Example why you need to check it:
      `M = torch.randint(low=0, high=2, size=(6, 64, 64), dtype = torch.float)`
      When you put this input through to_pil_image without mode argument, it converts to uint8 here:
      ```
      if pic.is_floating_point() and mode != 'F':
                  pic = pic.mul(255).byte()
      ```
      and change the mode to RGB here:
      ```
      if mode is None and npimg.dtype == np.uint8:
                  mode = 'RGB'
      ```
      Image.fromarray doesn't raise if provided with mode RGB and just cut number of channels from what you have to 3
      
      * Check number of channels before processing
      
      * Add test for invalid number of channels
      
      * Add explicit check for number of channels
      
      Example why you need to check it:
      `M = torch.randint(low=0, high=2, size=(6, 64, 64), dtype = torch.float)`
      When you put this input through to_pil_image without mode argument, it converts to uint8 here:
      ```
      if pic.is_floating_point() and mode != 'F':
                  pic = pic.mul(255).byte()
      ```
      and change the mode to RGB here:
      ```
      if mode is None and npimg.dtype == np.uint8:
                  mode = 'RGB'
      ```
      Image.fromarray doesn't raise if provided with mode RGB and just cut number of channels from what you have to 3
      
      * Check number of channels before processing
      
      * Add test for invalid number of channels
      
      * Put check after channel dim unsqueeze
      
      * Add test if error message is matching
      
      * Delete redundant code
      
      * Bug fix in checking for bad types
      Co-authored-by: default avatarDemyanchuk <demyanca@mh-hannover.local>
      Co-authored-by: default avatarvfdev <vfdev.5@gmail.com>
      a51c49e4
  30. 16 Nov, 2020 1 commit
  31. 06 Nov, 2020 1 commit
  32. 22 Oct, 2020 1 commit
  33. 21 Oct, 2020 1 commit
  34. 16 Oct, 2020 1 commit