- 10 Sep, 2017 1 commit
-
-
Alykhan Tejani authored
-
- 26 Aug, 2017 1 commit
-
-
Sri Krishna authored
-
- 25 Aug, 2017 1 commit
-
-
Yusu Pan authored
-
- 14 Jul, 2017 1 commit
-
-
Konstantin Lopuhin authored
-
- 02 Jun, 2017 1 commit
-
-
Sasank Chilamkurthy authored
* Add documentation for transforms * document and remove unused imports in mnist.py * document lsun, mscoco datasets * rest of the datasets documented * Clean up the documentation in other functions * Add links for datasets * Add more documentation * pep8 fix
-
- 31 May, 2017 1 commit
-
-
Sam Gross authored
Fixes #152
-
- 21 May, 2017 1 commit
-
-
Sri Krishna authored
changed a small mistake.
-
- 30 Apr, 2017 1 commit
-
-
Marat Dukhan authored
-
- 10 Apr, 2017 1 commit
-
-
Konstantin Lopuhin authored
First dimension is batch size, channel is the second
-
- 01 Apr, 2017 1 commit
-
-
Furiously Curious authored
I have made some performance improvements to the model, and testing them now. If results turn out good, I will submit a separate PR.
-
- 28 Mar, 2017 1 commit
-
-
Karan Dwivedi authored
-
- 27 Mar, 2017 1 commit
-
-
Yuanzheng Ci authored
Using python2 style '/' will convert int type to float in python3 which will cause the following error when creating FloatTensor: TypeError: torch.FloatTensor constructor received an invalid combination of arguments - got (float, int, int, int), but expected one of: * no arguments * (int ...) didn't match because some of the arguments have invalid types: (float, int, int, int)
-
- 23 Mar, 2017 1 commit
-
-
Geoff Pleiss authored
-
- 18 Mar, 2017 1 commit
-
-
soumith authored
-
- 16 Mar, 2017 1 commit
-
-
Sam Gross authored
-
- 13 Mar, 2017 2 commits
-
-
Soumith Chintala authored
-
Sam Gross authored
-
- 10 Mar, 2017 1 commit
-
-
Sam Gross authored
-
- 27 Feb, 2017 1 commit
-
-
Luke Yeager authored
git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i
-
- 24 Feb, 2017 1 commit
-
-
Luke Yeager authored
-
- 21 Feb, 2017 1 commit
-
-
Sam Gross authored
-
- 11 Feb, 2017 1 commit
-
-
Marat Dukhan authored
* Add SqueezeNet 1.0 and 1.1 models * Selectively avoid inplace in SqueezeNet * Use Glorot uniform initialization in SqueezeNet * Make all ReLU in SqueezeNet in-place * Add pretrained SqueezeNet 1.0 and 1.1 * Minor fixes in SqueezeNet models
-
- 02 Feb, 2017 1 commit
-
-
Thibault de Boissiere authored
* Update VGG doco
-
- 17 Jan, 2017 2 commits
-
-
Sam Gross authored
Also add pre-trained ResNet-152 model. ResNet-152: Prec@1 78.312 Prec@5 94.046
-
Soumith Chintala authored
-
- 12 Jan, 2017 1 commit
-
-
Sam Gross authored
-
- 09 Jan, 2017 1 commit
-
-
Sam Gross authored
-