"examples/vscode:/vscode.git/clone" did not exist on "eb8e8dc84fa6b3e3174bfdc82b19035a624f7c3d"
- 28 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Adding presets in the classification reference scripts. * Adding presets in the object detection reference scripts. * Adding presets in the segmentation reference scripts. * Adding presets in the video classification reference scripts. * Moving flip at the end to align with image classification signature.
-
- 14 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Add MobileNetV3 Architecture in TorchVision (#3182) * Adding implementation of network architecture * Adding rmsprop support on the train.py * Adding auto-augment and random-erase in the training scripts. * Adding support for reduced tail on MobileNetV3. * Tagging blocks with comments. * Adding documentation, pre-trained model URL and a minor refactoring. * Handling better untrained supported models.
-
- 07 Jan, 2021 1 commit
-
-
Ben Weinstein authored
* remove unused imports after manual review * Update torchvision/datasets/voc.py Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * remove two more instances Co-authored-by:
Ben Weinstein <benweinstein@Bens-MacBook-Pro.local> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 03 Jun, 2020 1 commit
-
-
Vasiliy Kuznetsov authored
Summary: We've made two recent changes to QAT in PyTorch core: 1. add support for SyncBatchNorm 2. make eager mode QAT prepare scripts respect device affinity This PR updates the torchvision QAT reference script to take advantage of both of these. This should be landed after https://github.com/pytorch/pytorch/pull/39337 (the last PT fix) to avoid compatibility issues. Test Plan: ``` python -m torch.distributed.launch --nproc_per_node 8 --use_env references/classification/train_quantization.py --data-path {imagenet1k_subset} --output-dir {tmp} --sync-bn ``` Reviewers: Subscribers: Tasks: Tags:
-
- 18 May, 2020 1 commit
-
-
Vasiliy Kuznetsov authored
Summary: Redo of https://github.com/pytorch/vision/pull/2191 Makes the classification QAT tutorial not crash when used with DDP. There were two issues: 1. the model was moved to GPU before the observers were added, and they are created on CPU. In the context of this repo, the fix is to finalize the model before moving to GPU. We can potentially follow up with a better error message in the future, in a separate PR. 2. the QAT conversion was running on the DDP'ed model, which had various problems. The fix is to unwrap the model from DDP before cloning it for evaluation. There is still work to do on verifying that BN is working correctly in QAT + DDP, but saving that for a separate PR. Test Plan: ``` python -m torch.distributed.launch --use_env references/classification/train_quantization.py --data-path {path_to_imagenet_1k} --output_dir {output_dir} ``` Reviewers: Subscribers: Tasks: Tags:
-
- 31 Mar, 2020 1 commit
-
-
Philip Meier authored
* remove sys.version_info == 2 * remove sys.version_info < 3 * remove from __future__ imports
-
- 20 Mar, 2020 1 commit
-
-
Philip Meier authored
* add default parameters to README * fix vgg_*_bn
-
- 13 Mar, 2020 1 commit
-
-
hx89 authored
-
- 10 Mar, 2020 1 commit
-
-
Kentaro Yoshioka authored
usage and performance are from the vision0.5 release notes.
-
- 04 Nov, 2019 1 commit
-
-
hx89 authored
-
- 30 Oct, 2019 1 commit
-
-
Vinh Nguyen authored
-
- 26 Oct, 2019 2 commits
-
-
raghuramank100 authored
* add quantized models * Modify mobilenet.py documentation and clean up comments Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Move fuse_model method to QuantizableInvertedResidual and clean up args documentation Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Restore relu settings to default in resnet.py Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix missing return in forward Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix missing return in forwards Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Change pretrained -> pretrained_float_models Replace InvertedResidual with block Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Update tests to follow similar structure to test_models.py, allowing for modular testing Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Replace forward method with simple function assignment Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix error in arguments for resnet18 Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * pretrained_float_model argument missing for mobilenet Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * reference script for quantization aware training and post training quantization * reference script for quantization aware training and post training quantization * set pretrained_float_model as False and explicitly provide float model Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Address review comments: 1. Replace forward with _forward 2. Use pretrained models in reference train/eval script 3. Modify test to skip if fbgemm is not supported Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix lint errors. Use _forward for common code between float and quantized models Clean up linting for reference train scripts Test over all quantizable models Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Update default values for args in quantization/train.py Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Update models to conform to new API with quantize argument Remove apex in training script, add post training quant as an option Add support for separate calibration data set. Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix minor errors in train_quantization.py Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Remove duplicate file * Bugfix * Minor improvements on the models * Expose print_freq to evaluate * Minor improvements on train_quantization.py * Ensure that quantized models are created and run on the specified backends Fix errors in test only mode Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Add model urls * Fix errors in quantized model tests. Speedup creation of random quantized model by removing histogram observers Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Move setting qengine prior to convert. Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix lint error Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Add readme.md Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Readme.md Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix lint
-
Francisco Massa authored
* Initial version of README for classification reference scripts * More context
-
- 19 Jul, 2019 1 commit
-
-
Vinh Nguyen authored
* adding mixed precision training with Apex * fix APEX default optimization level * adding python version check for apex * fix LINT errors and raise exceptions if apex not available * fixing apex distributed training * fix throughput calculation: include forward pass * remove torch.cuda.set_device(args.gpu) as it's already called in init_distributed_mode * fix linter: new line * move Apex initialization code back to the beginning of main * move apex initialization to before lr_scheduler - for peace of mind. Though, doing apex initialization after lr_scheduler seems to work fine as well
-
- 14 Jun, 2019 1 commit
-
-
LXYTSOS authored
* can't work with pytorch-cpu fixed utils.py can't work with pytorch-cpu because of this line of code `memory=torch.cuda.max_memory_allocated()` * can't work with pytorch-cpu fixed utils.py can't work with pytorch-cpu because of this line of code 'memory=torch.cuda.max_memory_allocated()'
-
- 06 Jun, 2019 1 commit
-
-
Vinh Nguyen authored
* adding mixed precision training with Apex * fix APEX default optimization level * adding python version check for apex * fix LINT errors and raise exceptions if apex not available
-
- 21 May, 2019 1 commit
-
-
Francisco Massa authored
Allows for easily evaluating the pre-trained models in the modelzoo
-
- 19 May, 2019 1 commit
-
-
Francisco Massa authored
-
- 08 May, 2019 1 commit
-
-
Francisco Massa authored
* Miscellaneous improvements to the classification reference scritps * Fix lint
-
- 02 Apr, 2019 2 commits
-
-
Francisco Massa authored
* Add groups support to ResNet * Kill BaseResNet * Make it support multi-machine training
-
Surgan Jandial authored
Making references/classification/train.py and references/classification/utils.py compatible with python2 (#831) * linter fixes * linter fixes
-
- 28 Mar, 2019 1 commit
-
-
Francisco Massa authored
* Initial version of classification reference training script * Updates * Minor updates * Expose a few more options * Load optimizer and lr_scheduler when resuming Also log the learning rate * Evaluation-only and minor improvements Identified a bug in the reporting of the results. They need to be reduced between all processes * Address Soumith's comment * Fix some approximations on the evaluation metric * Flake8
-