1. 03 Nov, 2021 1 commit
  2. 01 Nov, 2021 1 commit
  3. 08 Oct, 2021 1 commit
  4. 05 Oct, 2021 1 commit
    • Kai Zhang's avatar
      Update Regnet model weights (#4530) · 0c0a6a44
      Kai Zhang authored
      * add best weights and x_1_6, x_3_2, y_1_6, y_3_2, y_32 weights
      
      * add best weights and x_1_6, x_3_2, y_1_6, y_3_2, y_32 weights
      
      * add weights for x_16gf, x_32gf, y_16gf
      0c0a6a44
  5. 29 Sep, 2021 1 commit
    • Kai Zhang's avatar
      Add RegNet Architecture in TorchVision (#4403) · 194a0846
      Kai Zhang authored
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * add expected test pkl files
      
      * allow custom activation in SqueezeExcitation
      
      * use ReLU as the default activation
      
      * initial code
      
      * add SqueezeExcitation
      
      * initial code
      
      * add SqueezeExcitation
      
      * add SqueezeExcitation
      
      * regnet blocks, stems and model definition
      
      * nit
      
      * add fc layer
      
      * use Callable instead of Enum for block, stem and activation
      
      * add regnet_x and regnet_y model build functions, add docs
      
      * remove unused depth
      
      * use BN/activation constructor and ConvBNActivation
      
      * reuse SqueezeExcitation from efficientnet
      
      * refactor RegNetParams into BlockParams
      
      * use nn.init, replace np with torch
      
      * update README
      
      * construct model with stem, block, classifier instances
      
      * Revert "construct model with stem, block, classifier instances"
      
      This reverts commit 850f5f3ed01a2a9b36fcbf8405afd6e41d2e58ef.
      
      * remove unused blocks
      
      * support scaled model
      
      * fuse into ConvBNActivation
      
      * make reset_parameters private
      
      * fix type errors
      
      * fix for unit test
      
      * add pretrained weights for 6 variant models, update docs
      194a0846
  6. 04 Sep, 2021 2 commits
  7. 26 Aug, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add EfficientNet Architecture in TorchVision (#4293) · 37a9ee5b
      Vasilis Vryniotis authored
      * Adding code skeleton
      
      * Adding MBConvConfig.
      
      * Extend SqueezeExcitation to support custom min_value and activation.
      
      * Implement MBConv.
      
      * Replace stochastic_depth with operator.
      
      * Adding the rest of the EfficientNet implementation
      
      * Update torchvision/models/efficientnet.py
      
      * Replacing 1st activation of SE with SiLU.
      
      * Adding efficientnet_b3.
      
      * Replace mobilenetv3 assets with custom.
      
      * Switch to standard sigmoid and reconfiguring BN.
      
      * Reconfiguration of efficientnet.
      
      * Add repr
      
      * Add weights.
      
      * Update weights.
      
      * Adding B5-B7 weights.
      
      * Update docs and hubconf.
      
      * Fix doc link.
      
      * Fix typo on comment.
      37a9ee5b
  8. 22 May, 2021 1 commit
  9. 18 May, 2021 1 commit
  10. 12 May, 2021 1 commit
  11. 11 May, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSDlite architecture with MobileNetV3 backbones (#3757) · 43d77206
      Vasilis Vryniotis authored
      * Partial implementation of SSDlite.
      
      * Add normal init and BN hyperparams.
      
      * Refactor to keep JIT happy
      
      * Completed SSDlite.
      
      * Fix lint
      
      * Update todos
      
      * Add expected file in repo.
      
      * Use C4 expansion instead of C4 output.
      
      * Change scales formula for Default Boxes.
      
      * Add cosine annealing on trainer.
      
      * Make T_max count epochs.
      
      * Fix test and handle corner-case.
      
      * Add support of support width_mult
      
      * Add ssdlite presets.
      
      * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining.
      
      * Use _reduced_tail=True.
      
      * Add sync BN support.
      
      * Adding the best config along with its weights and documentation.
      
      * Make mean/std configurable.
      
      * Fix not implemented for half exception
      43d77206
  12. 30 Apr, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSD architecture with VGG16 backbone (#3403) · 730c5e1e
      Vasilis Vryniotis authored
      * Early skeleton of API.
      
      * Adding MultiFeatureMap and vgg16 backbone.
      
      * Making vgg16 backbone same as paper.
      
      * Making code generic to support all vggs.
      
      * Moving vgg's extra layers a separate class + L2 scaling.
      
      * Adding header vgg layers.
      
      * Fix maxpool patching.
      
      * Refactoring code to allow for support of different backbones & sizes:
      - Skeleton for Default Boxes generator class
      - Dynamic estimation of configuration when possible
      - Addition of types
      
      * Complete the implementation of DefaultBox generator.
      
      * Replace randn with empty.
      
      * Minor refactoring
      
      * Making clamping between 0 and 1 optional.
      
      * Change xywh to xyxy encoding.
      
      * Adding parameters and reusing objects in constructor.
      
      * Temporarily inherit from Retina to avoid dup code.
      
      * Implement forward methods + temp workarounds to inherit from retina.
      
      * Inherit more methods from retinanet.
      
      * Fix type error.
      
      * Add Regression loss.
      
      * Fixing JIT issues.
      
      * Change JIT workaround to minimize new code.
      
      * Fixing initialization bug.
      
      * Add classification loss.
      
      * Update todos.
      
      * Add weight loading support.
      
      * Support SSD512.
      
      * Change kernel_size to get output size 1x1
      
      * Add xavier init and refactoring.
      
      * Adding unit-tests and fixing JIT issues.
      
      * Add a test for dbox generator.
      
      * Remove unnecessary import.
      
      * Workaround on GeneralizedRCNNTransform to support fixed size input.
      
      * Remove unnecessary random calls from the test.
      
      * Remove more rand calls from the test.
      
      * change mapping and handling of empty labels
      
      * Fix JIT warnings.
      
      * Speed up loss.
      
      * Convert 0-1 dboxes to original size.
      
      * Fix warning.
      
      * Fix tests.
      
      * Update comments.
      
      * Fixing minor bugs.
      
      * Introduce a custom DBoxMatcher.
      
      * Minor refactoring
      
      * Move extra layer definition inside feature extractor.
      
      * handle no bias on init.
      
      * Remove fixed image size limitation
      
      * Change initialization values for bias of classification head.
      
      * Refactoring and update test file.
      
      * Adding ResNet backbone.
      
      * Minor refactoring.
      
      * Remove inheritance of retina and general refactoring.
      
      * SSD should fix the input size.
      
      * Fixing messages and comments.
      
      * Silently ignoring exception if test-only.
      
      * Update comments.
      
      * Update regression loss.
      
      * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach.
      
      * Fixing tests.
      
      * Refactor to move the losses from the Head to the SSD.
      
      * Removing resnet50 ssd version.
      
      * Adding support for best performing backbone and its config.
      
      * Refactor and clean up the API.
      
      * Fix lint
      
      * Update todos and comments.
      
      * Adding RandomHorizontalFlip and RandomIoUCrop transforms.
      
      * Adding necessary checks to our tranforms.
      
      * Adding RandomZoomOut.
      
      * Adding RandomPhotometricDistort.
      
      * Moving Detection transforms to references.
      
      * Update presets
      
      * fix lint
      
      * leave compose and object
      
      * Adding scaling for completeness.
      
      * Adding params in the repr
      
      * Remove unnecessary import.
      
      * minor refactoring
      
      * Remove unnecessary call.
      
      * Give better names to DBox* classes
      
      * Port num_anchors estimation in generator
      
      * Remove rescaling and fix presets
      
      * Add the ability to pass a custom head and refactoring.
      
      * fix lint
      
      * Fix unit-test
      
      * Update todos.
      
      * Change mean values.
      
      * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only.
      
      * Adding documentation
      
      * Adding weights and updating readmes.
      
      * Update the model weights with a more performing model.
      
      * Adding doc for head.
      
      * Restore import.
      730c5e1e
  13. 09 Feb, 2021 2 commits
  14. 08 Feb, 2021 1 commit
  15. 02 Feb, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add Quantizable MobilenetV3 architecture for Classification (#3323) · 8317295c
      Vasilis Vryniotis authored
      * Refactoring mobilenetv3 to make code reusable.
      
      * Adding quantizable MobileNetV3 architecture.
      
      * Fix bug on reference script.
      
      * Moving documentation of quantized models in the right place.
      
      * Update documentation.
      
      * Workaround for loading correct weights of quant model.
      
      * Update weight URL and readme.
      
      * Adding eval.
      8317295c
  16. 27 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Segmentation (#3276) · e2db2edd
      Vasilis Vryniotis authored
      * Making _segm_resnet() generic and reusable.
      
      * Adding fcn and deeplabv3 directly on mobilenetv3 backbone.
      
      * Adding tests for segmentation models.
      
      * Rename is_strided with _is_cn.
      
      * Add dilation support on MobileNetV3 for Segmentation.
      
      * Add Lite R-ASPP with MobileNetV3 backbone.
      
      * Add pretrained model weights.
      
      * Removing model fcn_mobilenet_v3_large.
      
      * Adding docs and imports.
      
      * Fixing typo and readme.
      e2db2edd
  17. 19 Jan, 2021 1 commit
  18. 18 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Detection (#3253) · bf211dac
      Vasilis Vryniotis authored
      * Minor refactoring of a private method to make it reusuable.
      
      * Adding a FasterRCNN + MobileNetV3 with & w/o FPN models.
      
      * Reducing Resolution to 320-640 and anchor sizes to 16-256.
      
      * Increase anchor sizes.
      
      * Adding rpn score threshold param on the train script.
      
      * Adding trainable_backbone_layers param on the train script.
      
      * Adding rpn_score_thresh param directly in fasterrcnn_mobilenet_v3_large_fpn.
      
      * Remove fasterrcnn_mobilenet_v3_large prototype and update expected file.
      
      * Update documentation and adding weights.
      
      * Use buildin Identity.
      
      * Fix spelling.
      bf211dac
  19. 14 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Classification (#3252) · 7bf6e7b1
      Vasilis Vryniotis authored
      * Add MobileNetV3 Architecture in TorchVision (#3182)
      
      * Adding implementation of network architecture
      
      * Adding rmsprop support on the train.py
      
      * Adding auto-augment and random-erase in the training scripts.
      
      * Adding support for reduced tail on MobileNetV3.
      
      * Tagging blocks with comments.
      
      * Adding documentation, pre-trained model URL and a minor refactoring.
      
      * Handling better untrained supported models.
      7bf6e7b1
  20. 13 Oct, 2020 1 commit
    • Francisco Massa's avatar
      RetinaNet object detection (take 2) (#2784) · 5bb81c8e
      Francisco Massa authored
      
      
      * Add rough implementation of RetinaNet.
      
      * Move AnchorGenerator to a seperate file.
      
      * Move box similarity to Matcher.
      
      * Expose extra blocks in FPN.
      
      * Expose retinanet in __init__.py.
      
      * Use P6 and P7 in FPN for retinanet.
      
      * Use parameters from retinanet for anchor generation.
      
      * General fixes for retinanet model.
      
      * Implement loss for retinanet heads.
      
      * Output reshaped outputs from retinanet heads.
      
      * Add postprocessing of detections.
      
      * Small fixes.
      
      * Remove unused argument.
      
      * Remove python2 invocation of super.
      
      * Add postprocessing for additional outputs.
      
      * Add missing import of ImageList.
      
      * Remove redundant import.
      
      * Simplify class correction.
      
      * Fix pylint warnings.
      
      * Remove the label adjustment for background class.
      
      * Set default score threshold to 0.05.
      
      * Add weight initialization for regression layer.
      
      * Allow training on images with no annotations.
      
      * Use smooth_l1_loss with beta value.
      
      * Add more typehints for TorchScript conversions.
      
      * Fix linting issues.
      
      * Fix type hints in postprocess_detections.
      
      * Fix type annotations for TorchScript.
      
      * Fix inconsistency with matched_idxs.
      
      * Add retinanet model test.
      
      * Add missing JIT annotations.
      
      * Remove redundant model construction
      
      Make tests pass
      
      * Fix bugs during training on newer PyTorch and unused params in DDP
      
      Needs cleanup and to add back support for images with no annotations
      
      * Cleanup resnet_fpn_backbone
      
      * Use L1 loss for regression
      
      Gives 1mAP improvement over smooth l1
      
      * Disable support for images with no annotations
      
      Need to fix distributed first
      
      * Fix retinanet tests
      
      Need to deduplicate those box checks
      
      * Fix Lint
      
      * Add pretrained model
      
      * Add training info for retinanet
      Co-authored-by: default avatarHans Gaiser <hansg91@gmail.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robovalley.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robohouse.com>
      5bb81c8e
  21. 09 Sep, 2020 1 commit
  22. 10 Apr, 2020 1 commit
  23. 31 Mar, 2020 1 commit
  24. 12 Mar, 2020 1 commit
  25. 06 Aug, 2019 1 commit
  26. 26 Jun, 2019 1 commit
    • Sergey Zagoruyko's avatar
      Add pretrained Wide ResNet (#912) · 2b6da28c
      Sergey Zagoruyko authored
      * add wide resnet
      
      * add docstring for wide resnet
      
      * update WRN-50-2 model
      
      * add docs
      
      * extend WRN docstring
      
      * use pytorch storage for WRN
      
      * fix rebase
      
      * fix typo in docs
      2b6da28c
  27. 24 Jun, 2019 1 commit
    • Dmitry Belenko's avatar
      Implementation of the MNASNet family of models (#829) · 69b28578
      Dmitry Belenko authored
      * Add initial mnasnet impl
      
      * Remove all type hints, comply with PyTorch overall style
      
      * Expose models
      
      * Remove avgpool from features() and add separately
      
      * Fix python3-only stuff, replace subclasses with functions
      
      * fix __all__
      
      * Fix typo
      
      * Remove conditional dropout
      
      * Make dropout functional
      
      * Addressing @fmassa's feedback, round 1
      
      * Replaced adaptive avgpool with mean on H and W to prevent collapsing the batch dimension
      
      * Partially address feedback
      
      * YAPF
      
      * Removed redundant class vars
      
      * Update urls to releases
      
      * Add information to models.rst
      
      * Replace init with kaiming_normal_ in fan-out mode
      
      * Use load_state_dict_from_url
      69b28578
  28. 05 Jun, 2019 1 commit
  29. 03 Jun, 2019 1 commit
  30. 21 May, 2019 3 commits
  31. 19 May, 2019 1 commit
  32. 30 Apr, 2019 1 commit
    • Bar's avatar
      Add ShuffleNet v2 (#849) · 7a4845a9
      Bar authored
      * Add ShuffleNet v2
      
      Added 4 configurations: x0.5, x1, x1.5, x2
      Add 2 pretrained models: x0.5, x1
      
      * fix lint
      
      * Change globalpool to torch.mean() call
      7a4845a9
  33. 07 Mar, 2019 1 commit
    • Michael Kösel's avatar
      Add GoogLeNet (Inception v1) (#678) · a2093007
      Michael Kösel authored
      * Add GoogLeNet (Inception v1)
      
      * Fix missing padding
      
      * Add missing ReLu to aux classifier
      
      * Add Batch normalized version of GoogLeNet
      
      * Use ceil_mode instead of padding and initialize weights using "xavier"
      
      * Match BVLC GoogLeNet zero initialization of classifier
      
      * Small cleanup
      
      * use adaptive avg pool
      
      * adjust network to match TensorFlow
      
      * Update url of pre-trained model and add classification results on ImageNet
      
      * Bugfix that improves performance by 1 point
      a2093007
  34. 11 Oct, 2018 1 commit
  35. 06 Feb, 2018 1 commit
  36. 23 Oct, 2017 1 commit