Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
ce778bb7
"git@developer.sourcefind.cn:OpenDAS/dgl.git" did not exist on "4463b3d6a5d375cf1a960543429a31f723bc3969"
Unverified
Commit
ce778bb7
authored
May 09, 2022
by
Nicolas Hug
Committed by
GitHub
May 09, 2022
Browse files
CleanUp DenseNet code (#5966)
parent
b0dbbd7a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
20 deletions
+12
-20
torchvision/models/densenet.py
torchvision/models/densenet.py
+12
-20
No files found.
torchvision/models/densenet.py
View file @
ce778bb7
...
@@ -34,22 +34,14 @@ class _DenseLayer(nn.Module):
...
@@ -34,22 +34,14 @@ class _DenseLayer(nn.Module):
self
,
num_input_features
:
int
,
growth_rate
:
int
,
bn_size
:
int
,
drop_rate
:
float
,
memory_efficient
:
bool
=
False
self
,
num_input_features
:
int
,
growth_rate
:
int
,
bn_size
:
int
,
drop_rate
:
float
,
memory_efficient
:
bool
=
False
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
self
.
norm1
:
nn
.
BatchNorm2d
self
.
norm1
=
nn
.
BatchNorm2d
(
num_input_features
)
self
.
add_module
(
"norm1"
,
nn
.
BatchNorm2d
(
num_input_features
))
self
.
relu1
=
nn
.
ReLU
(
inplace
=
True
)
self
.
relu1
:
nn
.
ReLU
self
.
conv1
=
nn
.
Conv2d
(
num_input_features
,
bn_size
*
growth_rate
,
kernel_size
=
1
,
stride
=
1
,
bias
=
False
)
self
.
add_module
(
"relu1"
,
nn
.
ReLU
(
inplace
=
True
))
self
.
conv1
:
nn
.
Conv2d
self
.
norm2
=
nn
.
BatchNorm2d
(
bn_size
*
growth_rate
)
self
.
add_module
(
self
.
relu2
=
nn
.
ReLU
(
inplace
=
True
)
"conv1"
,
nn
.
Conv2d
(
num_input_features
,
bn_size
*
growth_rate
,
kernel_size
=
1
,
stride
=
1
,
bias
=
False
)
self
.
conv2
=
nn
.
Conv2d
(
bn_size
*
growth_rate
,
growth_rate
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
)
self
.
norm2
:
nn
.
BatchNorm2d
self
.
add_module
(
"norm2"
,
nn
.
BatchNorm2d
(
bn_size
*
growth_rate
))
self
.
relu2
:
nn
.
ReLU
self
.
add_module
(
"relu2"
,
nn
.
ReLU
(
inplace
=
True
))
self
.
conv2
:
nn
.
Conv2d
self
.
add_module
(
"conv2"
,
nn
.
Conv2d
(
bn_size
*
growth_rate
,
growth_rate
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
)
self
.
drop_rate
=
float
(
drop_rate
)
self
.
drop_rate
=
float
(
drop_rate
)
self
.
memory_efficient
=
memory_efficient
self
.
memory_efficient
=
memory_efficient
...
@@ -136,10 +128,10 @@ class _DenseBlock(nn.ModuleDict):
...
@@ -136,10 +128,10 @@ class _DenseBlock(nn.ModuleDict):
class
_Transition
(
nn
.
Sequential
):
class
_Transition
(
nn
.
Sequential
):
def
__init__
(
self
,
num_input_features
:
int
,
num_output_features
:
int
)
->
None
:
def
__init__
(
self
,
num_input_features
:
int
,
num_output_features
:
int
)
->
None
:
super
().
__init__
()
super
().
__init__
()
self
.
add_module
(
"
norm
"
,
nn
.
BatchNorm2d
(
num_input_features
)
)
self
.
norm
=
nn
.
BatchNorm2d
(
num_input_features
)
self
.
add_module
(
"
relu
"
,
nn
.
ReLU
(
inplace
=
True
)
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
add_module
(
"
conv
"
,
nn
.
Conv2d
(
num_input_features
,
num_output_features
,
kernel_size
=
1
,
stride
=
1
,
bias
=
False
)
)
self
.
conv
=
nn
.
Conv2d
(
num_input_features
,
num_output_features
,
kernel_size
=
1
,
stride
=
1
,
bias
=
False
)
self
.
add_module
(
"
pool
"
,
nn
.
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
)
)
self
.
pool
=
nn
.
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
)
class
DenseNet
(
nn
.
Module
):
class
DenseNet
(
nn
.
Module
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment