Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
ce778bb7
Unverified
Commit
ce778bb7
authored
May 09, 2022
by
Nicolas Hug
Committed by
GitHub
May 09, 2022
Browse files
CleanUp DenseNet code (#5966)
parent
b0dbbd7a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
20 deletions
+12
-20
torchvision/models/densenet.py
torchvision/models/densenet.py
+12
-20
No files found.
torchvision/models/densenet.py
View file @
ce778bb7
...
@@ -34,22 +34,14 @@ class _DenseLayer(nn.Module):
...
@@ -34,22 +34,14 @@ class _DenseLayer(nn.Module):
self
,
num_input_features
:
int
,
growth_rate
:
int
,
bn_size
:
int
,
drop_rate
:
float
,
memory_efficient
:
bool
=
False
self
,
num_input_features
:
int
,
growth_rate
:
int
,
bn_size
:
int
,
drop_rate
:
float
,
memory_efficient
:
bool
=
False
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
self
.
norm1
:
nn
.
BatchNorm2d
self
.
norm1
=
nn
.
BatchNorm2d
(
num_input_features
)
self
.
add_module
(
"norm1"
,
nn
.
BatchNorm2d
(
num_input_features
))
self
.
relu1
=
nn
.
ReLU
(
inplace
=
True
)
self
.
relu1
:
nn
.
ReLU
self
.
conv1
=
nn
.
Conv2d
(
num_input_features
,
bn_size
*
growth_rate
,
kernel_size
=
1
,
stride
=
1
,
bias
=
False
)
self
.
add_module
(
"relu1"
,
nn
.
ReLU
(
inplace
=
True
))
self
.
conv1
:
nn
.
Conv2d
self
.
norm2
=
nn
.
BatchNorm2d
(
bn_size
*
growth_rate
)
self
.
add_module
(
self
.
relu2
=
nn
.
ReLU
(
inplace
=
True
)
"conv1"
,
nn
.
Conv2d
(
num_input_features
,
bn_size
*
growth_rate
,
kernel_size
=
1
,
stride
=
1
,
bias
=
False
)
self
.
conv2
=
nn
.
Conv2d
(
bn_size
*
growth_rate
,
growth_rate
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
)
self
.
norm2
:
nn
.
BatchNorm2d
self
.
add_module
(
"norm2"
,
nn
.
BatchNorm2d
(
bn_size
*
growth_rate
))
self
.
relu2
:
nn
.
ReLU
self
.
add_module
(
"relu2"
,
nn
.
ReLU
(
inplace
=
True
))
self
.
conv2
:
nn
.
Conv2d
self
.
add_module
(
"conv2"
,
nn
.
Conv2d
(
bn_size
*
growth_rate
,
growth_rate
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
)
self
.
drop_rate
=
float
(
drop_rate
)
self
.
drop_rate
=
float
(
drop_rate
)
self
.
memory_efficient
=
memory_efficient
self
.
memory_efficient
=
memory_efficient
...
@@ -136,10 +128,10 @@ class _DenseBlock(nn.ModuleDict):
...
@@ -136,10 +128,10 @@ class _DenseBlock(nn.ModuleDict):
class
_Transition
(
nn
.
Sequential
):
class
_Transition
(
nn
.
Sequential
):
def
__init__
(
self
,
num_input_features
:
int
,
num_output_features
:
int
)
->
None
:
def
__init__
(
self
,
num_input_features
:
int
,
num_output_features
:
int
)
->
None
:
super
().
__init__
()
super
().
__init__
()
self
.
add_module
(
"
norm
"
,
nn
.
BatchNorm2d
(
num_input_features
)
)
self
.
norm
=
nn
.
BatchNorm2d
(
num_input_features
)
self
.
add_module
(
"
relu
"
,
nn
.
ReLU
(
inplace
=
True
)
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
add_module
(
"
conv
"
,
nn
.
Conv2d
(
num_input_features
,
num_output_features
,
kernel_size
=
1
,
stride
=
1
,
bias
=
False
)
)
self
.
conv
=
nn
.
Conv2d
(
num_input_features
,
num_output_features
,
kernel_size
=
1
,
stride
=
1
,
bias
=
False
)
self
.
add_module
(
"
pool
"
,
nn
.
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
)
)
self
.
pool
=
nn
.
AvgPool2d
(
kernel_size
=
2
,
stride
=
2
)
class
DenseNet
(
nn
.
Module
):
class
DenseNet
(
nn
.
Module
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment