Unverified Commit b2d42a24 authored by kaijieshi's avatar kaijieshi Committed by GitHub
Browse files

fix spell error (#5554)


Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
parent 7039c2c3
...@@ -119,14 +119,14 @@ class ConvNormActivation(torch.nn.Sequential): ...@@ -119,14 +119,14 @@ class ConvNormActivation(torch.nn.Sequential):
class Conv2dNormActivation(ConvNormActivation): class Conv2dNormActivation(ConvNormActivation):
""" """
Configurable block used for Convolution2d-Normalzation-Activation blocks. Configurable block used for Convolution2d-Normalization-Activation blocks.
Args: Args:
in_channels (int): Number of channels in the input image in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3 kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1 stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation`` padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d`` norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d``
activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU`` activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
...@@ -169,14 +169,14 @@ class Conv2dNormActivation(ConvNormActivation): ...@@ -169,14 +169,14 @@ class Conv2dNormActivation(ConvNormActivation):
class Conv3dNormActivation(ConvNormActivation): class Conv3dNormActivation(ConvNormActivation):
""" """
Configurable block used for Convolution3d-Normalzation-Activation blocks. Configurable block used for Convolution3d-Normalization-Activation blocks.
Args: Args:
in_channels (int): Number of channels in the input video. in_channels (int): Number of channels in the input video.
out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3 kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1 stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation`` padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm3d`` norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm3d``
activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU`` activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment