@@ -119,14 +119,14 @@ class ConvNormActivation(torch.nn.Sequential):
...
@@ -119,14 +119,14 @@ class ConvNormActivation(torch.nn.Sequential):
classConv2dNormActivation(ConvNormActivation):
classConv2dNormActivation(ConvNormActivation):
"""
"""
Configurable block used for Convolution2d-Normalzation-Activation blocks.
Configurable block used for Convolution2d-Normalization-Activation blocks.
Args:
Args:
in_channels (int): Number of channels in the input image
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d``
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d``
activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
...
@@ -169,14 +169,14 @@ class Conv2dNormActivation(ConvNormActivation):
...
@@ -169,14 +169,14 @@ class Conv2dNormActivation(ConvNormActivation):
classConv3dNormActivation(ConvNormActivation):
classConv3dNormActivation(ConvNormActivation):
"""
"""
Configurable block used for Convolution3d-Normalzation-Activation blocks.
Configurable block used for Convolution3d-Normalization-Activation blocks.
Args:
Args:
in_channels (int): Number of channels in the input video.
in_channels (int): Number of channels in the input video.
out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm3d``
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm3d``
activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``