Unverified Commit 385a44f8 authored by YosuaMichael's avatar YosuaMichael Committed by GitHub
Browse files

Remove publication_year and interpolation meta (#5848)



* Remove publication_year and interpolation meta

* Add type to _COMMON_META and _COMMON_SWAG_META to prevent error from mypy check

* Remove test to check interpolation and publication_year meta
Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
parent 7d83be5e
......@@ -81,7 +81,7 @@ def test_naming_conventions(model_fn):
def test_schema_meta_validation(model_fn):
classification_fields = ["size", "categories", "acc@1", "acc@5", "min_size"]
defaults = {
"all": ["task", "architecture", "publication_year", "interpolation", "recipe", "num_params"],
"all": ["task", "architecture", "recipe", "num_params"],
"models": classification_fields,
"detection": ["categories", "map"],
"quantization": classification_fields + ["backend", "quantization", "unquantized"],
......
......@@ -4,7 +4,7 @@ from typing import Any, Optional
import torch
import torch.nn as nn
from ..transforms._presets import ImageClassification, InterpolationMode
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
......@@ -59,12 +59,10 @@ class AlexNet_Weights(WeightsEnum):
meta={
"task": "image_classification",
"architecture": "AlexNet",
"publication_year": 2012,
"num_params": 61100840,
"size": (224, 224),
"min_size": (63, 63),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg",
"acc@1": 56.522,
"acc@5": 79.066,
......
......@@ -7,7 +7,7 @@ from torch.nn import functional as F
from ..ops.misc import Conv2dNormActivation
from ..ops.stochastic_depth import StochasticDepth
from ..transforms._presets import ImageClassification, InterpolationMode
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
......@@ -206,11 +206,9 @@ def _convnext(
_COMMON_META = {
"task": "image_classification",
"architecture": "ConvNeXt",
"publication_year": 2022,
"size": (224, 224),
"min_size": (32, 32),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#convnext",
}
......
......@@ -9,7 +9,7 @@ import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import Tensor
from ..transforms._presets import ImageClassification, InterpolationMode
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
......@@ -268,11 +268,9 @@ def _densenet(
_COMMON_META = {
"task": "image_classification",
"architecture": "DenseNet",
"publication_year": 2016,
"size": (224, 224),
"min_size": (29, 29),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/pull/116",
}
......
......@@ -6,7 +6,7 @@ from torch import nn
from torchvision.ops import MultiScaleRoIAlign
from ...ops import misc as misc_nn_ops
from ...transforms._presets import ObjectDetection, InterpolationMode
from ...transforms._presets import ObjectDetection
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_value_param
......@@ -372,9 +372,7 @@ class FastRCNNPredictor(nn.Module):
_COMMON_META = {
"task": "image_object_detection",
"architecture": "FasterRCNN",
"publication_year": 2015,
"categories": _COCO_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
}
......@@ -398,7 +396,6 @@ class FasterRCNN_ResNet50_FPN_V2_Weights(WeightsEnum):
transforms=ObjectDetection,
meta={
**_COMMON_META,
"publication_year": 2021,
"num_params": 43712278,
"recipe": "https://github.com/pytorch/vision/pull/5763",
"map": 46.7,
......
......@@ -11,7 +11,7 @@ from ...ops import sigmoid_focal_loss, generalized_box_iou_loss
from ...ops import boxes as box_ops
from ...ops import misc as misc_nn_ops
from ...ops.feature_pyramid_network import LastLevelP6P7
from ...transforms._presets import ObjectDetection, InterpolationMode
from ...transforms._presets import ObjectDetection
from ...utils import _log_api_usage_once
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
......@@ -653,10 +653,8 @@ class FCOS_ResNet50_FPN_Weights(WeightsEnum):
meta={
"task": "image_object_detection",
"architecture": "FCOS",
"publication_year": 2019,
"num_params": 32269600,
"categories": _COCO_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#fcos-resnet-50-fpn",
"map": 39.2,
},
......
......@@ -5,7 +5,7 @@ from torch import nn
from torchvision.ops import MultiScaleRoIAlign
from ...ops import misc as misc_nn_ops
from ...transforms._presets import ObjectDetection, InterpolationMode
from ...transforms._presets import ObjectDetection
from .._api import WeightsEnum, Weights
from .._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES
from .._utils import handle_legacy_interface, _ovewrite_value_param
......@@ -310,10 +310,8 @@ class KeypointRCNNPredictor(nn.Module):
_COMMON_META = {
"task": "image_object_detection",
"architecture": "KeypointRCNN",
"publication_year": 2017,
"categories": _COCO_PERSON_CATEGORIES,
"keypoint_names": _COCO_PERSON_KEYPOINT_NAMES,
"interpolation": InterpolationMode.BILINEAR,
}
......
......@@ -5,7 +5,7 @@ from torch import nn
from torchvision.ops import MultiScaleRoIAlign
from ...ops import misc as misc_nn_ops
from ...transforms._presets import ObjectDetection, InterpolationMode
from ...transforms._presets import ObjectDetection
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_value_param
......@@ -354,7 +354,6 @@ _COMMON_META = {
"task": "image_object_detection",
"architecture": "MaskRCNN",
"categories": _COCO_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
}
......@@ -364,7 +363,6 @@ class MaskRCNN_ResNet50_FPN_Weights(WeightsEnum):
transforms=ObjectDetection,
meta={
**_COMMON_META,
"publication_year": 2017,
"num_params": 44401393,
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#mask-r-cnn",
"map": 37.9,
......@@ -380,7 +378,6 @@ class MaskRCNN_ResNet50_FPN_V2_Weights(WeightsEnum):
transforms=ObjectDetection,
meta={
**_COMMON_META,
"publication_year": 2021,
"num_params": 46359409,
"recipe": "https://github.com/pytorch/vision/pull/5773",
"map": 47.4,
......
......@@ -11,7 +11,7 @@ from ...ops import sigmoid_focal_loss
from ...ops import boxes as box_ops
from ...ops import misc as misc_nn_ops
from ...ops.feature_pyramid_network import LastLevelP6P7
from ...transforms._presets import ObjectDetection, InterpolationMode
from ...transforms._presets import ObjectDetection
from ...utils import _log_api_usage_once
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
......@@ -677,7 +677,6 @@ _COMMON_META = {
"task": "image_object_detection",
"architecture": "RetinaNet",
"categories": _COCO_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
}
......@@ -687,7 +686,6 @@ class RetinaNet_ResNet50_FPN_Weights(WeightsEnum):
transforms=ObjectDetection,
meta={
**_COMMON_META,
"publication_year": 2017,
"num_params": 34014999,
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#retinanet",
"map": 36.4,
......@@ -702,7 +700,6 @@ class RetinaNet_ResNet50_FPN_V2_Weights(WeightsEnum):
transforms=ObjectDetection,
meta={
**_COMMON_META,
"publication_year": 2019,
"num_params": 38198935,
"recipe": "https://github.com/pytorch/vision/pull/5756",
"map": 41.5,
......
......@@ -7,7 +7,7 @@ import torch.nn.functional as F
from torch import nn, Tensor
from ...ops import boxes as box_ops
from ...transforms._presets import ObjectDetection, InterpolationMode
from ...transforms._presets import ObjectDetection
from ...utils import _log_api_usage_once
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
......@@ -32,11 +32,9 @@ class SSD300_VGG16_Weights(WeightsEnum):
meta={
"task": "image_object_detection",
"architecture": "SSD",
"publication_year": 2015,
"num_params": 35641826,
"size": (300, 300),
"categories": _COCO_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssd300-vgg16",
"map": 25.1,
},
......
......@@ -7,7 +7,7 @@ import torch
from torch import nn, Tensor
from ...ops.misc import Conv2dNormActivation
from ...transforms._presets import ObjectDetection, InterpolationMode
from ...transforms._presets import ObjectDetection
from ...utils import _log_api_usage_once
from .. import mobilenet
from .._api import WeightsEnum, Weights
......@@ -191,11 +191,9 @@ class SSDLite320_MobileNet_V3_Large_Weights(WeightsEnum):
meta={
"task": "image_object_detection",
"architecture": "SSDLite",
"publication_year": 2018,
"num_params": 3440060,
"size": (320, 320),
"categories": _COCO_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssdlite320-mobilenetv3-large",
"map": 21.3,
},
......
......@@ -439,8 +439,6 @@ _COMMON_META = {
_COMMON_META_V1 = {
**_COMMON_META,
"architecture": "EfficientNet",
"publication_year": 2019,
"interpolation": InterpolationMode.BICUBIC,
"min_size": (1, 1),
}
......@@ -448,8 +446,6 @@ _COMMON_META_V1 = {
_COMMON_META_V2 = {
**_COMMON_META,
"architecture": "EfficientNetV2",
"publication_year": 2021,
"interpolation": InterpolationMode.BILINEAR,
"min_size": (33, 33),
}
......@@ -494,7 +490,6 @@ class EfficientNet_B1_Weights(WeightsEnum):
**_COMMON_META_V1,
"num_params": 7794184,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-lr-wd-crop-tuning",
"interpolation": InterpolationMode.BILINEAR,
"size": (240, 240),
"acc@1": 79.838,
"acc@5": 94.934,
......
......@@ -8,7 +8,7 @@ import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from ..transforms._presets import ImageClassification, InterpolationMode
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
......@@ -282,12 +282,10 @@ class GoogLeNet_Weights(WeightsEnum):
meta={
"task": "image_classification",
"architecture": "GoogLeNet",
"publication_year": 2014,
"num_params": 6624904,
"size": (224, 224),
"min_size": (15, 15),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#googlenet",
"acc@1": 69.778,
"acc@5": 89.530,
......
......@@ -7,7 +7,7 @@ import torch
import torch.nn.functional as F
from torch import nn, Tensor
from ..transforms._presets import ImageClassification, InterpolationMode
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
......@@ -414,12 +414,10 @@ class Inception_V3_Weights(WeightsEnum):
meta={
"task": "image_classification",
"architecture": "InceptionV3",
"publication_year": 2015,
"num_params": 27161264,
"size": (299, 299),
"min_size": (75, 75),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#inception-v3",
"acc@1": 77.294,
"acc@5": 93.450,
......
......@@ -6,7 +6,7 @@ import torch
import torch.nn as nn
from torch import Tensor
from ..transforms._presets import ImageClassification, InterpolationMode
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
......@@ -214,11 +214,9 @@ class MNASNet(torch.nn.Module):
_COMMON_META = {
"task": "image_classification",
"architecture": "MNASNet",
"publication_year": 2018,
"size": (224, 224),
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/1e100/mnasnet_trainer",
}
......
......@@ -7,7 +7,7 @@ from torch import Tensor
from torch import nn
from ..ops.misc import Conv2dNormActivation
from ..transforms._presets import ImageClassification, InterpolationMode
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
......@@ -197,12 +197,10 @@ class MobileNetV2(nn.Module):
_COMMON_META = {
"task": "image_classification",
"architecture": "MobileNetV2",
"publication_year": 2018,
"num_params": 3504872,
"size": (224, 224),
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
}
......
......@@ -6,7 +6,7 @@ import torch
from torch import nn, Tensor
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation as SElayer
from ..transforms._presets import ImageClassification, InterpolationMode
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
......@@ -306,11 +306,9 @@ def _mobilenet_v3(
_COMMON_META = {
"task": "image_classification",
"architecture": "MobileNetV3",
"publication_year": 2019,
"size": (224, 224),
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
}
......
......@@ -8,7 +8,7 @@ from torch.nn.modules.batchnorm import BatchNorm2d
from torch.nn.modules.instancenorm import InstanceNorm2d
from torchvision.ops import Conv2dNormActivation
from ...transforms._presets import OpticalFlow, InterpolationMode
from ...transforms._presets import OpticalFlow
from ...utils import _log_api_usage_once
from .._api import Weights, WeightsEnum
from .._utils import handle_legacy_interface
......@@ -514,8 +514,6 @@ class RAFT(nn.Module):
_COMMON_META = {
"task": "optical_flow",
"architecture": "RAFT",
"publication_year": 2020,
"interpolation": InterpolationMode.BILINEAR,
}
......
......@@ -7,7 +7,7 @@ import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from ...transforms._presets import ImageClassification, InterpolationMode
from ...transforms._presets import ImageClassification
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
......@@ -113,12 +113,10 @@ class GoogLeNet_QuantizedWeights(WeightsEnum):
meta={
"task": "image_classification",
"architecture": "GoogLeNet",
"publication_year": 2014,
"num_params": 6624904,
"size": (224, 224),
"min_size": (15, 15),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"backend": "fbgemm",
"quantization": "Post Training Quantization",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
......
......@@ -9,7 +9,7 @@ from torch import Tensor
from torchvision.models import inception as inception_module
from torchvision.models.inception import InceptionOutputs, Inception_V3_Weights
from ...transforms._presets import ImageClassification, InterpolationMode
from ...transforms._presets import ImageClassification
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
......@@ -179,12 +179,10 @@ class Inception_V3_QuantizedWeights(WeightsEnum):
meta={
"task": "image_classification",
"architecture": "InceptionV3",
"publication_year": 2015,
"num_params": 27161264,
"size": (299, 299),
"min_size": (75, 75),
"categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"backend": "fbgemm",
"quantization": "Post Training Quantization",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment